
MeTTaMath:

Integrating Formal Verification into an AGI Cognitive

Architecture via the MeTTa language

From Metamath proof checking to AGI-native verified reasoning

Zarathustra Amadeus Goertzel

September 1, 2025

Czech Institute of Informatics, Robotics and Cybernetics

Motivating Question: How should verified reasoning be integrated into AGIs?

• The ITP model: lean proof kernel that can outsource proof-search to ATPs.

• Is it important to have proofs in the cognitive language of the AGI system?

• This may reduce translation errors between systems, etc.

• I’m working with Hyperon—an AGI framework fostering cognitive synergy

among diverse components using shared knowledge representations.

• MeTTa: gradually-typed meta-programming language; programming as pattern

matching & rewriting over metagraphs.

• If wishing to do inference control experiments as Nil suggests with PLN, which

mathematical library should be used?

• (I am neither an expert in MeTTa nor Metamath: there exist educational

motives.)

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 1/27

https://github.com/ngeiswei/presentations/blob/master/2025/AITP-25/ProbEstThrmInfCtrlPrsn.pdf

Why Metamath?

• Ultra-minimal proof language with a single core rule: substitution.

• Existing tiny Python verifier (mmverify.py) — I’d like to minimize work!

• Good alignment with MeTTa: the proof structure may be natively similar in

MeTTa.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 2/27

MeTTaMath: State of the Project

• Metamath verifier implemented in MeTTa, as a deep embedding1.

• Small Metamath tests passed.

• Simple demo0.mm (proving t = t) passed through the backward chainer:

demo0 bc.metta.

1Deep = object language as data. Shallow = map constructs directly to host semantics.
MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 3/27

https://github.com/zariuq/mmverify.py/tree/master
https://github.com/zariuq/metamath-test
https://github.com/zariuq/mmverify.py/blob/mettification/examples/demo0_bc.metta

Implementation Sketch: Verifier Overview

• mmverify.py parses the Metamath file sequentially and maintains a frames stack

(scope) with:

▷ Active variable symbols, active floating hypotheses (≈ type decls), essential hypotheses

(assumptions), and disjoint-variable constraints (≈ to manage variable scoping).

• Constants, assertions, and proven statements are indexed by label.

• Verification uses a stack to construct the assertion.

• Verification step (hypotheses): push onto the stack.

• Verification step (assertions):

1. Treat each proof step to construct the target assertion via a substitution stack:

(a) Construct the substitution from f hyps;

(b) Check that the substituted e hyps match the assertion’s e hyps;

(c) Check disjoint-variable constraints: if d(x , y), then

• V (σ(x)) ∩ V (σ(y)) = ∅;

• ∀xi ∈ V (σ(x)), yi ∈ V (σ(y)), d(xi , yi).

2. Push the σ-substituted conclusion onto the stack.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 4/27

Implementation Sketch: Verifier Overview (parsing)

• MeTTa HE 0.2.6 is very slow and the string operations currently go through

Python, so I didn’t bother implementing the parsing.

• The MM.read() function generally looks as follows:

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 5/27

https://github.com/trueagi-io/hyperon-experimental

MeTTa Basics Interlude

• Everything is an Atom (of metatypes: Symbol, Variable, Ground and Expression)

• To me it feels like a mix of declarative and functional programming.

• Data live in spaces; which can be queried with match and unify, and one can

chain on the results.

• Rewriting: (= (lhs) rhs) defines reduction rules rules; matching binds variables.

• Results are superpositions of matches; non-determinism is the default.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 6/27

MeTTa Basics Interlude

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 7/27

MeTTa Basics Interlude

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 8/27

MeTTa Data Structures Used

• I use a &stack space for the stack.

• I use a &sp state for the stack pointer.

• I use $subst spaces to build up substitution dictionaries.

• I use the &kb space for everything else:

• The labels of $f, $e, $a, and $p statements.

• The frame stack by adding (FSDepth $d) atoms to expressions on the stack2.

2I confess to doing embarrassingly little effort to optimize for performance rather than correctness,

unless, however, it was too excruciatingly slow to even do small examples.
MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 9/27

Implementation Sketch: Verifier Overview (essential hypotheses)

• add e adds an essential hypothesis statement to the frame and the list of e hyps

at that frame.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 10/27

Implementation Sketch: Verifier Overview (disjoint variables)

• add d takes a variable list and adds each new oriented pair to the frame (via

&kb).

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 11/27

Implementation Sketch: Verifier Overview (floating hypotheses)

• add f registers a floating hypothesis at the current frame depth and adds it to the

list of f hyps at that frame.

• Checks that the var and typecode are declared, and that the var isn’t assigned to

any other typecode.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 12/27

Implementation Sketch: Verifier Overview (axiomatic assertions)

• add a makes an assertion based on the current frame scopes and the statement.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 13/27

Implementation Sketch: Verifier Overview (provable assertions)

• add p does the same as add a after verifying the proof.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 14/27

Implementation Sketch: Verifier Overview (make assertion)

Collect in scope e hyps, mark mandatory vars, and their DVs and f hyps.
(= (make_assertion $stmt) (let* (

($e_hyps_lists (matchc &kb (EList (FSDepth $level) $elist) ($level $elist)))
($e_levels (collapse (match-atom’ $e_hyps_lists ($l $_) $l)))
($e_max_level (if (== $e_levels (())) 0 (max-atom $e_levels)))
($e_hyps_list (collect_lists_by_depth $e_hyps_lists 1 $e_max_level Nil))

($e_hyps_toks (from-list (flatten-list $e_hyps_list)))
($_0 (map-atom $e_hyps_toks $tok (add_mand_var $tok)))
($_1 (map-atom $stmt $tok (add_mand_var $tok)))
($mand_vars (matchc &kb (MandVar $var) $var))
($dvs (matchc &kb (DVar ($x $y) $_ (Type "$d")) (unify &kb (MandVar $x) (unify &kb (

MandVar $y) ($x $y) ()) ())))

($f_hyps_lists (matchc &kb (FList (FSDepth $level) $flist) ($level $flist)))
($f_levels (collapse (match-atom’ $f_hyps_lists ($l $_) $l)))
($f_max_level (if (== $f_levels (())) 0 (max-atom $f_levels)))
($f_hyps_list (collect_lists_by_depth $f_hyps_lists 1 $f_max_level Nil))

($f_hyps (filter’ $f_hyps_list assign_f_hyp_to_var))

($mand_vars’ (matchc &kb (MandVar $var) $var))
($_2 (remove-patternc &kb (MandVar $var)))

) ((DVars $dvs) (FHyps (from-list $f_hyps)) (EHyps (from-list $e_hyps_list)) (Statement

$stmt))))

Implementation Sketch: Verifier Overview (verify)

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 16/27

Implementation Sketch: Verifier Overview (treat normal proof)

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 17/27

Implementation Sketch: Verifier Overview (treat step)

Looks up the label’s data and passes treatment on.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 18/27

Implementation Sketch: Verifier Overview (treat hypothesis)

If the label is active, the floating or essential hypothesis is added to &stack.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 19/27

Implementation Sketch: Verifier Overview (treat assertion)

1. Calculates how many atoms to pop from the stack.

2. Builds the substitution space from f hyps on the stack (if the typecodes match what the

assertion needs).

3. Check that each stack entry matches the substituted e hyps in order.

4. Checks for disjoint variable violations.

5. Applies the substitution to the assertion statement, and pushes it to the stack.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 20/27

Implementation Sketch: Verifier Overview (...)

• The rest is on github.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 21/27

Backward Chainer

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 22/27

Backward Chainer Friendly Form?

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 23/27

Backward Chainer: Goal

Can the bc find the proof of t = t?

Backward Chainer: Goal

Can the bc find the proof of t = t?

A: nope, but it can replay the proof, but Nil’s version is becoming readable.

What’s next?

• Probably switching from MM → MeTTa to MM0/U → MeTTa.

• MM0 already does a lot of the work we’d need to do inference over MM.

• (Also, disjoint variables are kinda quirky and weird.)

• Minimal MeTTa 2 (MM2) is a low-level, efficient version of MeTTa.

• It probably makes sense to explore MM0/U → MM2.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 26/27

What’s next?

• Probably switching from MM → MeTTa to MM0/U → MeTTa.

• MM0 already does a lot of the work we’d need to do inference over MM.

• (Also, disjoint variables are kinda quirky and weird.)

• Minimal MeTTa 2 (MM2) is a low-level, efficient version of MeTTa.

• It probably makes sense to explore MM0/U → MM2.

• ... and I’m open to feedback as to what might make sense in terms of (lazily)

integrating formal verification into AGIs.

MeTTaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the MeTTa language 27/27

