MeT TaMath:
Integrating Formal Verification into an AGI Cognitive
Architecture via the MeT Ta language

From METAMATH proof checking to AGl-native verified reasoning

Zarathustra Amadeus Goertzel
September 1, 2025

Czech Institute of Informatics, Robotics and Cybernetics

Motivating Question: How should verified reasoning be integrated into AGls?

The ITP model: lean proof kernel that can outsource proof-search to ATPs.
e Is it important to have proofs in the cognitive language of the AGI system?
e This may reduce translation errors between systems, etc.
e |I'm working with HYPERON—an AGI framework fostering cognitive synergy
among diverse components using shared knowledge representations.

e METTA: gradually-typed meta-programming language; programming as pattern
matching & rewriting over metagraphs.

e If wishing to do inference control experiments as Nil suggests with PLN, which
mathematical library should be used?

e (I am neither an expert in MeTTa nor Metamath: there exist educational
motives.)

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

https://github.com/ngeiswei/presentations/blob/master/2025/AITP-25/ProbEstThrmInfCtrlPrsn.pdf

Why Metamath?

e Ultra-minimal proof language with a single core rule: substitution.
e Existing tiny Python verifier (mmverify.py) — I'd like to minimize work!

e Good alignment with METTA: the proof structure may be natively similar in
MeT Ta.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

MeTTaMath: State of the Project

e Metamath verifier implemented in METTA, as a deep embedding®.

e Small Metamath tests passed.
e Simple demoO.mm (proving t = t) passed through the backward chainer:

demoO_bc.metta.

'Deep = object language as data. Shallow = map constructs directly to host semantics.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

https://github.com/zariuq/mmverify.py/tree/master
https://github.com/zariuq/metamath-test
https://github.com/zariuq/mmverify.py/blob/mettification/examples/demo0_bc.metta

Implementation Sketch: Verifier Overview

e mmverify.py parses the METAMATH file sequentially and maintains a frames stack
(scope) with:
> Active variable symbols, active floating hypotheses (= type decls), essential hypotheses
(assumptions), and disjoint-variable constraints (= to manage variable scoping).

Constants, assertions, and proven statements are indexed by label.
Verification uses a stack to construct the assertion.

Verification step (hypotheses): push onto the stack.

Verification step (assertions):
1. Treat each proof step to construct the target assertion via a substitution stack:
(a) Construct the substitution from f_hyps;
(b) Check that the substituted e_hyps match the assertion’s e_hyps;
(c) Check disjoint-variable constraints: if d(x,y), then
e V(a(x)) N V(a(y)) = 2
o Vx; € V(o(x)), yi € V(a(y)), d(xi,).
2. Push the o-substituted conclusion onto the stack.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (parsing)

e MeTTa HE 0.2.6 is very slow and the string operations currently go through
Python, so | didn't bother implementing the parsing.
e The MM.read() function generally looks as follows:

mettarL(f'!(add_f {mettify(label)} {mettify(stmt[0])} {mettify(stmt[1])} {len(self.fs)})')
self.add f(stmt[®], stmt[1], label)
self.labels[label] = ('$f', [stmt[0], stmt[1]])
label = None
elif tok == '$e':
if not label:
raise MMError('$e must have label')
stmt = self.read non p stmt(tok, toks)
mettarl(f'!(add_e {mettify(label)} {mettify(stmt)} {len(self.fs)})')
self.fs.add_e(stmt, label)
self.labels[label] = ('$e', stmt)
label = None
elif tok == '$a':
if not label:

raise MMError('$a must have label')

stmt = self.read_non_p_stmt(tok, toks) # Just less-compact

mettarl(f'!(add_a {mettify(label)} {mettify(stmt)})")

dvs, f_hyps, e_hyps, stmt = self.fs.make assertion(stmt) # make assertion(self.read non_p_stmt(tok, toks))
self.labels[label] = ('$a', (dvs, f_hyps, e_hyps, stmt))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language 5/27

https://github.com/trueagi-io/hyperon-experimental

MeT Ta Basics Interlude

Everything is an Atom (of metatypes: Symbol, Variable, Ground and Expression)

To me it feels like a mix of declarative and functional programming.

e Data live in spaces; which can be queried with match and unify, and one can
chain on the results.

Rewriting: (= (1lhs) rhs) defines reduction rules rules; matching binds variables.

Results are superpositions of matches; non-determinism is the default.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

MeT Ta Basics Interlude

0]
[0)]
[0)]
[("(" *t" =+ "@" =) "=n "t")]

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

MeT Ta Basics Interlude

R R R L B e S IR KO}

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

MeTTa Data Structures Used

e | use a &stack space for the stack.

e | use a &sp state for the stack pointer.

e | use $subst spaces to build up substitution dictionaries.
e | use the &kb space for everything else:

e The labels of $f, $e, $a, and $p statements.
e The frame stack by adding (FSDepth $d) atoms to expressions on the stack?.

2| confess to doing embarrassingly little effort to optimize for performance rather than correctness,
unless, however, it was too excruciatingly slow to even do small examples.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (essential hypotheses)

e add_e adds an essential hypothesis statement to the frame and the list of e_hyps
at that frame.

(= (add_e $label $stmt $level)
(let*
(

($elist entry (to-list ($stmt)))

(() (unify &kb (EList (FSDepth $level) $elist)
(let $elist' (append $glist $elist entry)

(update-atom &kb (ELIst (FsDepth $level) $elist) (EList (FSDepth $level) $elist')))

(add-atom &kb (EList (FSDepth $level) $elist entry)))) o
(() (println! ("add essential hypothesis:™ (label $label) (Statement $stmt) (level $level))))

)
(add-atom &kb ((Label $label) EHyp (FSDepth $level) ((Statement $stmt) (Type "$e"))))

)

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M

Implementation Sketch: Verifier Overview (disjoint variables)

e add_d takes a variable list and adds each new oriented pair to the frame (via

&kb).

(= (add_dv_pair_if_fresh $x $y $level)
if (== %x %y) ()
(let (%$ox $oy) (orient_pair $x $%y)
(unify &kb (DVar (%ox $oy) (FSDepth $level) (Type "$d"))
()
(add-atom &kb (DVar (%ox %oy) (FSDepth $level) (Type "$d")))))))

(= (add_d $varlist $level)
(map- atom_EUETITst $x
(map- atom Svarlist $y
(add_dv_pair_if_fresh $x $y $level))))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (floating hypotheses)

e add_f registers a floating hypothesis at the current frame depth and adds it to the
list of f_hyps at that frame.

e Checks that the var and typecode are declared, and that the var isn't assigned to
any other typecode.

(= (add_f $label $typecode $var $level)
(unify &kb (Var $var $_ (Type "$v"))
(unify &kb (Constant $typecode (Type "$c"))

(unify &kb ((Label $label') FHyp (FSDepth $FSDepth) ((Typecode $typecode') (Fvar $var) (Type "$f")))
(Error ((Label $label') (Typecode $typecode') (Var $var)) "var in $f already typed by an active $f-statement.”)
(let*

($flist_entry (to-list (($typecode $var))))
(() (unify &kb (FList (FSDepth $level) $flist)
(let $flist' (append $flist $flist_entry) (update-atom &kb (FList (FSDepth $level) $flist) (FList (FSDepth $level) $flist')))
(add-atom &kb (FList (FSDepth $level) $flist_entry))))
)
(add-atom &kb ((Label $label) FHyp (FSDepth $level) ((Typecode $typecode) (FVar $var) (Type "$f"))))
)
(Error (Constant $typecode) "Typecode in $T not declared."))
(Error (Var $var) "var in $f not declared."))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (axiomatic assertions)

e add_a makes an assertion based on the current frame scopes and the statement.

(= (add_& Slabel $stmt)
(let*

(
(() (println! ("make_assertion” $label - $stmt)))
(((DVars $dvs) (FHyps $f_hyps) (EHyps $e_hyps) (Statement $stmt)) (make_assertion $stmt))
(() (println! ("gathered assertion data:" $dvs $f_hyps $e_hyps $stmt)))

)
(add-atom &kb ((Label $label) Assertion ((DVars $dvs) (FHyps $f_hyps) (EHyps $e_hyps) (Statement $stmt) (Type "$a") }))))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (provable assertions)

e add_p does the same as add_a after verifying the proof.

(= (add_p $label $stmt $proof $verify proofs)

(let*

(

(printlnt ""))

(println! (Verifying conclusion ($label) $stmt with proof $proof)))

(if $verify proofs (verify $proof $stmt) ()))

(println! ("make_assertion” $label - $stmt))) ;; This could just call add_a.

(DVars $dvs) (FHyps $f_hyps) (EHyps $e_hyps) (Statement $stmt)) (make_assertion $stmt))
) (println! ("gathered assertion data:" $dvs $f_hyps $e_hyps $stmt}))

(0
()
()
(0
((
()

(add-atom &kb ((Label $label) Proof ((DVars $dvs) (FHyps $f_hyps) (EHyps $e_hyps) (Statement $stmt) (Type "$p") (ProofSequence $proof))))))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M

Implementation Sketch: Verifier Overview (make assertion)

Collect in scope e_hyps, mark mandatory vars, and their DV's and f_hyps.
(= (make_assertion $stmt) (letx (
($e_hyps_lists (matchc &kb (EList (FSDepth $level) $elist) ($level $elist)))
($e_levels (collapse (match-atom’ $e_hyps_lists ($1 $_) $1)))
($e_max_level (if (== $e_levels (())) O (max-atom $e_levels)))
($e_hyps_list (collect_lists_by_depth $e_hyps_lists 1 $e_max_level Nil))
($e_hyps_toks (from-list (flatten-list $e_hyps_list)))
($_0 (map-atom $e_hyps_toks $tok (add_mand_var $tok)))
($_1 (map-atom $stmt $tok (add_mand_var $tok)))
($mand_vars (matchc &kb (MandVar $var) $var))
($dvs (matchc &kb (DVar ($x $y) $_ (Type "$d")) (unify &kb (MandVar $x) (unify &kb (
MandVar $y) ($x $y) O) O)))
($f_hyps_lists (matchc &kb (FList (FSDepth $level) $flist) ($level $flist)))
($f_levels (collapse (match-atom’ $f_hyps_lists ($1 $_) $1)))
($f_max_level (if (== $f_levels (())) O (max-atom $f_levels)))
($f_hyps_list (collect_lists_by_depth $f_hyps_lists 1 $f_max_level Nil))
($f_hyps (filter’ $f_hyps_list assign_f_hyp_to_var))
($mand_vars’ (matchc &kb (MandVar $var) $var))
($_2 (remove-patternc &kb (MandVar $var)))
) ((DVars $dvs) (FHyps (from-list $f_hyps)) (EHyps (from-list $e_hyps_list)) (Statement
$stmt))))

Implementation Sketch: Verifier Overview (verify)

(= (verify $proof $conclusion)
(let*

($_ﬂ- (treat_normal_proof-$proof))|
($stack_expr (matchc &stack ((Num $n) $f) $f))

(() (if (== () $stack_expr) (Error (assertion: $conclusion) "Empty stack at end of proof.") ()))

(() (if (> (size-atom $stack_expr) 1) (Error ((assertion: $conclusion) (stack: $stack_expr)) "Stack has more than one entry at end of proof.") ()))
$stack_top (car-atom $stack_expr))
(

(

(

)

(
(() (println! (Comparing: $stack_top " $conclusion)))

(() (if (== $conclusion $stack_top) () (Error ((assertion: $conclusion) (stack: $stack_expr)) "Stack entry does not match proved assertion.")))
(() (println! "Correct proof!"))

(

) ()))::($stack_top)))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture

Implementation Sketch: Verifier Overview (treat normal proof)

(= (treat_normal_proof $proof)
(let*

(
(() (println! (Got Proof: $proof)))
($_@ (empty-space Bstack)) ;; stack: list[Stmmt] = []
;; active_hypotheses = {label for frame in self.fs for labels in (frame.f_labels, frame.e_labels) for label in labels.values()}
($_1 (matchc &kb ((Label $label) FHyp $FSDepth $Data) (add-atom &kb (ActiveHyp $label))))
($_2 (matchc &kb ((Label $label) EHyp $FSDepth $Data) (add-atom &kb (ActiveHyp $label))))
[£3EQ (map-atom-$proof-$label- (treat_step-$label))|]

)

(remove-patternc &kb (ActiveHyp $_))))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M

Implementation Sketch: Verifier Overview (treat step)

Looks up the /label's data and passes treatment on.

(= (treat_step $label)
(let*
(
(() (println! (»»» treating label $label)))
(($Type $Data) (unify &kb ((Label $label) $Type $Data)
($Type $Data)
(unify &kb ((Label $label) $Type (FSDepth $level) $Data)
($Type $Data)
(Error (label $label) "
($stack_len (case (matchc §
(() (println! ($Type $labe

: $Data)))
)

(let ()
(case $Type
(

(FHyp (treat_hypothesis $label $Type $Data $stack_len))
(EHyp (treat_hypothesis $label $Type $Data $stack_len))
(Assertion (treat_assertion $label $Data $stack_len))
(Proof (treat_assertion $label $Data $stack_len))
1) i
(println! (stack ($label): (matchc {

K $s $5))))
)

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M

tatement information found for label”)})))

¢ ((Num $n) $s5) $n) ((() @) ($nums (+ 1 (max-atom $nums))) }))
4

Implementation Sketch: Verifier Overview (treat hypothesis)

If the label is active, the floating or essential hypothesis is added to &stack.

(= (treat_hypothesis $label $Type %Data %stack_len)
(unify &kb (ActiveHyp $label)
(case $Type
((FHyp
(let* {
($typecode (match-atom' $Data (Typecode $t) $t))
($var (match-atom' $Data (FVar $v) $v))
) (add-atom R&stack ((Num $stack_len) ($typecode $var)))))
(EHYp
(let $stmt (match-atom’ $Data (Statement $s) $s)
(add-atom &stack ((Num $stack_len) $stmt))))))
(Error (label $1abel] "The label is the label of a nonactive hypothesis.")))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

Implementation Sketch: Verifier Overview (treat assertion)

1. Calculates how many atoms to pop from the stack.
Builds the substitution space from f_hyps on the stack (if the typecodes match what the
assertion needs).

3. Check that each stack entry matches the substituted e_hyps in order.
Checks for disjoint variable violations.

5. Applies the substitution to the assertion statement, and pushes it to the stack.

(= (treat_assertion $label $Data $stack_len)
(let*
(
($dvars (match-atom' $Data (DVars $dvars) $dvars))
($fhyps (match-atom' $Data (FHyps $fhyps) $fhyps))
($ehyps (match-atom' $Data (EHyps $ehyps) $ehyps))
($statement (match-atom' $Data (Statement $statement) $statement))
($1f (size-atom $fhyps))
($le (size-atom $ehyps))
($npop (+ $1f $le))
($sp (- $stack_len $npop))
(() (if (< $sp @) (Error ((label $label) (npop $npop)) "Stack underflow: proof step requires too many hypotheses") ()))
($_8 (change-state! &sp $sp))
($subst (new-space)) ; ($subst &subst)
($_1 (map-atom $fhyps $fhyp (add-subst $subst $fhyp)))
($_2 (map-atom $ehyps $ehyp (check_subst $subst $ehyp)))
($_3 (eval (collapse (check_dvs $subst $dvars))))
($_4 (matchc &stack ((Num $n) $s) (if (== $n $sp) (remove-atom &stack ((Num $n) $s5)) ())))
($new_conclusion (let $new_conclusion (apply_subst $subst $statement) (let () (add-atom &stack ((Num $sp) $new_conclusion)) $new_conclusion)))
) ())):(println! (stack ($label): (matchc &stack $5 $5)))))

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language 20/27

Implementation Sketch: Verifier Overview (...)

e The rest is on github.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M 'A language

Backward Chainer

Base cases

Match the knowledge base

(bc $kb $env $_ (: $proof $theorem))

(match $kb (: $proof $theorem) (: $proof $theorem)))

; Match the environment

(bc $kb $env $_ (: $proof $theorem))

(match' $env (: $proof $theorem) (: $proof $theorem)))

;+ Recursive step

; Unary proof application

(bc $kb senv (s $k) (: ($rule $arg) $theorem))

(let* (;; Recurse on unary rule
((: $rule (-> $premises $theorem))
(bc $kb $env 3k (: $rule (-> $premises $theorem))))
.; Recurse on premise
((: $arg $premises)
(bc $kb $env 3k (: $arg $premises))))

(: ($rule $arg) $theorem)))

; Binary proof application

(bc $kb senv (5 $k) (: ($rule $argl $arg2) $theorem))

(let* (;; Recurse on binary rule
((: $rule (-> $premisesl $premises2 $theorem))
(bc $kb $env $k (: $rule (-> $premisesl $premisesz $theorem))))
;; Recurse on premise 1
((: $argl $premisesl) (bc $kb $env $k (: $argl $premisesl)))
;; Recurse on premise 2
((: $arg2 $premises2) (bc $kb $env $k (: $arg2 $premises2))))

(: ($rule $argl $arg2) $theorem)))

Backward Chainer Friendly Form?

I'(bind! &md (new-space))
| (add-atom &md (: (@) Const))

| (add-atom &md (: (+) Const))

!(add-atom &md (: (=) Const))

I (add-atom &md (: (->) Const))

! (add-atom &md (: ([) Const))

I (add-atom &md (: (I} Const))

! (add-atom &md (: (term) Const)

I (add-atom &md (: (wff) Const))

!(add-atom &md (: (|-) Const))

! (add-atom &md (: (t) Var))

| (add-atom &md (: (r} Var))

| (add-atom &md (: (s} Var))

!(add-atom &md (: (P) Var))

! (add-atom &md (: (Q) Var))

I (add-atom &md (: tt (: (t) (temm))))

I (add-atom &md (: tr (: (r) (term))))

! (add-atom &md (: ts (: (s} (term))))

! (add-atom &md (: wp (: (P} (wff))))

! (add-atom &md (: wg (: (Q) (wff))))

I (add-atom &md (: tze (: (@) (term})))

I(add-atom &md (: tpl (-> (: $(t) (texm)) (: $(r) (term)) (: ($(t} (+) $(r)) (temm))))

I (add-atom &md (: weq (-> (: $(t) (term)) (: $(r} (term)) (: ($(t) (=) $(1)) (wff)))))

!(add-atom &md (: wim (-> (: $(P) (wff})) (: $¢Q) {(wff)) (: ($(P) (->) $(Q)) (wff})))

!(add-atom &md (: al (-> (: $(t) (tewm)) (: $(r) (term}) (: $(s) (term)) (: ($(t) (=) $(T) (>} ($(U) (=) $(s) (->) D) (=) $(s))) ()N

! (add-atom &md (: a2 (-> (: $(t) (temm)) (: (($(t) (+) (@)) (=) $()) {|-)))

!(add-atom &md (: mp (-> (: $(P) (wff)) (: ${Q) (wff)) (: $(P) (I)) (($(P) (>} $(Q)) (-2 (5 B {[-))))
| (add-atom &md (: thl (-> (: ${t) (term)) (: (${t) (=) $(t

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the M

Backward Chainer: Goal

Can the bc find the proof of t = t7

> I(bc &self
Nil
(fromNumber 10)
$proof (: ({t) (=) (t}) (]-3)))
[(: ((((mp-curry (weq (tpl tt tze) tt)) (weq tt tt)) (a2 tt))
((((mp-curry (weq (tpl tt tze) tt)) (wim (weq (tpl tt tze) tt) (weq tt tt))) (a2 tt))
(({al-curry' (tpl tt tze)) tt) tt))) (= ({L) (=) {)) {|-)3))]

Backward Chainer: Goal

Can the bc find the proof of t = t7?
A: nope, but it can replay the proof, but Nil's version is becoming readable.

!(assertEqual
(bc &kbh (fromNumber 5)
(r (mp ((=) ((+} (r) (@}) (r))
({=) (t) (1))
(az (t})
(mp ((=} ({+) (t} (@)) (t})
({-=) ({=) ((+) {t) (©)) (t)) ({(=) (£} (E}))
(a2 (t})
(a1 ((+) (t} (@)) (t} {€))))
((=) () (t})))
(: (mp ((=) ((+) (r) (o)) (r))
((=) (t) (t}))
(a2 (t))
(mp ({=) ({+) (£} (@)) (L))
((->) (=) ({+)y (t) (O)) (t)) ({=) (t) (t}))
(a2 (t})
(a1 ({+} (t) (@) (t) (t})))
({=) (t) (t))))

What's next?

e Probably switching from MM — MeTTa to MM0O/U — MeTTa.

e MMO already does a lot of the work we'd need to do inference over MM.
e (Also, disjoint variables are kinda quirky and weird.)

e Minimal MeTTa 2 (MM2) is a low-level, efficient version of MeT Ta.
e It probably makes sense to explore MM0/U — MM2.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

What's next?

Probably switching from MM — MeTTa to MM0/U — MeT Ta.

e MMO already does a lot of the work we'd need to do inference over MM.
e (Also, disjoint variables are kinda quirky and weird.)

Minimal MeTTa 2 (MM2) is a low-level, efficient version of MeT Ta.
It probably makes sense to explore MM0/U — MM2.

e ... and I'm open to feedback as to what might make sense in terms of (lazily)
integrating formal verification into AGls.

MeT TaMath:Integrating Formal Verification into an AGI Cognitive Architecture via the METTA language

