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A complete graph of size 3
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A blue-red coloring avoiding 3-cliques
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A complete graph of size 4
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A blue-red coloring avoiding 3-cliques
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A complete graph of size 5
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A blue-red coloring avoiding 3-cliques
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A complete graph of size 6
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Definition of the Ramsey Number

The Ramsey number R(n, m) is the smallest k such that:

« it is not possible to find a coloring of the complete graph of size k which
avoids blue n-cliques and red m-cliques.

Example: R(3,3) =6

Ramsey Theorem: R(n, m) exists for every n,m € N.

The set of graphs (modulo isomorphism) of size k which avoid blue n-cliques
and red m-cliques is noted R(n, m, k).
A graph in R(n, m, k) will be called a R(n, m, k)-graph.

Example: R(3,3,5) # 0 and R(3,3,6) =0

We rely on the nauty algorithm to normalize graphs.
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Why prove that R(5,5) = 257

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time
unless human beings can find R(5,5). We could marshal the world’s best
minds and fastest computers, and within a year we could probably calculate
the value. If the aliens demanded R(6,6), however, we would have no choice
but to launch a preemptive attack.” — Paul Erdés
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How to find the value of R(5,5)?

Improve the lower bound and the upper bound.

. 1989: R(5,5) > 43
- 1995: R(5,5) < 50
+ 2017: R(5,5) < 48
- 2024: R(5,5) < 46

Some experts in the field have conjectured that R(5,5) =
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A standard strategy applied to R(5,5) < 43

Proof by contradiction: suppose there exists a R(5, 5, 43)-graph.
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How many gluing problems are they?

The worst case by far is d = 20 (we can ignore all other cases).

|R(4,5,20)| x |R(4,5,22)| = number of problems
(8.5 % 10'®) x (1.9 x 10"%) = 1.6 x 103

Without isomorphism checking: 20! x 22! times more problems.
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Solving one gluing problem

R(5,5,43)
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Solving one gluing sub-problem
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Solving one gluing problem

Result for Py:
+ 222 subproblems — 622,746 non-trivial
- Most solved by caDicalL in < 10s
 Hardest case: 8 hours
- Total: 200 CPU-days

Estimate for all gluing problems:
(1.62 x 10%*) x 200 CPU-days = 3.2 x 10%¢ CPU-days
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Generalization strategy

Construct Qo, Q1, Qo, . . ., Qp by forgetting the color of edges (one at a time).

Advantage:
+ Solving Q; solves many subproblems simultaneously.
» Covered subproblems may be from different gluing problems.

Disadvantage:
» Generalized problems are harder.
» Requires to check if a subproblem has already been covered.
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Edge selection

Run cabicaL on all potential generalizations from Q;.
(one for each colored edges in Q)
Select edge with the lowest amortized solving time:

solving time
number of subproblems covered

The number of subproblems covered is computed by a model counter.
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Generalization algorithm

Result for Qq:
+ Generalization sequence: Qu, Qi, Qo, . . ., Qogg.
 Stopped when CaDiCal solving time exceeded 20 seconds.
+ Took 10 hours to compute (rounded up to 1 day in our estimate).
« Solves an estimated 2.4 x 10%” non-isomorphic subproblems

Estimate for all gluing subproblems (thus all gluing problems):

(1.62 x 10%4) x 622,746 x 1 CPU-day
2.4 x 1027

=4.2 x 10" CPU-days
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Conclusion

Summary:

 Solved one of the gluing problem P, in 200 CPU-days.
Estimate for all gluing problems: 3.2 x 10%¢ CPU-days

+ Generalization of 298 vertices in a subproblem Q.
Estimate for all gluing problems: 4.2 x 10> CPU-days

Key ideas:

« symmetry-breaking (splitting vertex, isomorphism checking)
- generalization (don’t-care edges)

Future ideas:
- deeper splitting
+ simultaneous edge generalization
- faster edge selection: heuristics, graph neural networks.
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