A STRATEGY FOR LOWERING THE UPPER BOUND OF R(5,5)¹

Thibault Gauthier

Czech Technical University in Prague

¹This work was supported by the Czech Science Foundation grant no. 25-17929X, Czech Ministry of Education, Youth and Sports within the ERC CZ program under the project POSTMAN no. LL1902, and by Amazon Research Awards.

A complete graph of size 3

A blue-red coloring avoiding 3-cliques

A complete graph of size 4

A blue-red coloring avoiding 3-cliques

A complete graph of size 5

A blue-red coloring avoiding 3-cliques

A complete graph of size 6

Definition of the Ramsey Number

The Ramsey number R(n, m) is the smallest k such that:

 it is not possible to find a coloring of the complete graph of size k which avoids blue n-cliques and red m-cliques.

Example: R(3,3) = 6

Ramsey Theorem: R(n, m) exists for every $n, m \in \mathbb{N}$.

The set of graphs (modulo isomorphism) of size k which avoid blue n-cliques and red m-cliques is noted $\mathcal{R}(n, m, k)$.

A graph in $\mathcal{R}(n, m, k)$ will be called a $\mathcal{R}(n, m, k)$ -graph.

Example: $\mathcal{R}(3,3,5) \neq \emptyset$ and $\mathcal{R}(3,3,6) = \emptyset$

We rely on the nauty algorithm to normalize graphs.

Why prove that R(5,5) = 25?

"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find R(5,5). We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded R(6,6), however, we would have no choice but to launch a preemptive attack."

— Paul Erdős

How to find the value of R(5,5)?

Improve the lower bound and the upper bound.

- 1989: $R(5,5) \ge 43$
- 1995: $R(5,5) \le 50$
- 2017: $R(5,5) \le 48$
- 2024: $R(5,5) \le 46$

Some experts in the field have conjectured that R(5,5) = 43.

A standard strategy applied to $R(5,5) \le 43$

Proof by contradiction: suppose there exists a R(5, 5, 43)-graph.

How many gluing problems are they?

The worst case by far is d = 20 (we can ignore all other cases).

$$|R(4,5,20)| \times |R(4,5,22)| =$$
 number of problems $(8.5 \times 10^{18}) \times (1.9 \times 10^{15}) = 1.6 \times 10^{34}$

Without isomorphism checking: 20! × 22! times more problems.

Solving one gluing problem

Solving one gluing problem P_0

```
00#--0---0-0000---0
00-#---0-0-0000--0-
00--#--0-0---00--
000--#0---0000-----
00---0#--000-0--00-0-
00--0--#0-0-0---00
00-0--0#0---00
00--0-0#-00--0-0
00-0--00--#0---0-000
0-0--0--0 # 0----0
0--000-0-0-0#----00-
0-00-00-0---#-0-00-0
0-00-0--0---#000-0-
0-0-0-00-------
0---0-0--00--0000#--0
0--00-----------
0----000000-0-000-0#-
#000000000-----
                0#000-00--0--00--0
                00#-00000---000-0-0--
                00-#000-00---0--00
                0000#0--0--00-0---00
                0-000#-0-0-0-00-0-0-
                0000--#--0-0-0-0-0
                000--0-#--000----000--
                0-000---#-00-0-0-0-0-
                0--0-00--#---0-00-00
                00-----
                -------
                -00-00-0--0#00-0000-
                --000-0-0-0#-00000-0
                --0--00--0-#0000-00
                -0--00--0-00-00#00-000
                -00---0-00--000#0-00-
                ---0-0-0-00-0000 # 0 - - 0
                --------
                -0---#0-
                -0-00-0--000-000-00--#
```

Solving one gluing sub-problem

Solving one gluing sub-problem Q_0

```
00#--0---0-0000---0
00-#---0-0-0000--0-
00--#--0-0---00--
000--#0---0000-----
00---0#--000-0--00-0-
00--0--#0-0-0---00
00-0--0#0---00
00--0-0#-00--0-0
00-0--00--#0---0-000
0-0--00--00#0----0
0--000-0-0-0#----00-
0-00-00-0---#-0-00-0
0-00-0--0---#000-0-
0-0-0-00-------
0---0-0--00--0000#--0
0--00-----------
#000000000-----
               0#000-00--0--00--0
               00#-00000---000-0-0--
               00-#000-00---0--00
               0000#0--0--00-0---00
               0-000#-0-0-0-00-0-0-
               0000--#--0-0-0-0-0
               000--0-#--000----
               0-000---#-00-0-0-0-0-
               0--0-00--#---0-00-00
               00-----
               -------
               -00-00-0--0#00-0000-
               --000-0-0-0#-00000-0
               --0--00--0-#0000-00
               -0--00--0-00-00#00-000
               -00---0-00--000#0-00-
               ---0-0-0-00-0000 # 0 - - 0
               -0---#0-
               -0-00-0--000-000-00--#
```

Solving one gluing problem

Result for P_0 :

- 2^{22} subproblems \rightarrow 622,746 non-trivial
- Most solved by CaDiCaL in < 10s
- · Hardest case: 8 hours
- · Total: 200 CPU-days

Estimate for all gluing problems:

$$(1.62\times10^{34})\times200$$
 CPU-days $=3.2\times10^{36}$ CPU-days

Generalization strategy

Construct $Q_0, Q_1, Q_2, \dots, Q_n$ by forgetting the color of edges (one at a time).

Advantage:

- Solving Q_i solves many subproblems simultaneously.
- · Covered subproblems may be from different gluing problems.

Disadvantage:

- · Generalized problems are harder.
- Requires to check if a subproblem has already been covered.

Edge selection

Run CaDiCaL on all potential generalizations from Q_i . (one for each colored edges in Q_i)

Select edge with the lowest amortized solving time:

solving time number of subproblems covered

The number of subproblems covered is computed by a model counter.

Generalization algorithm

Result for Q_0 :

- Generalization sequence: $Q_0, Q_1, Q_2, \dots, Q_{298}$.
- Stopped when CaDiCaL solving time exceeded 20 seconds.
- Took 10 hours to compute (rounded up to 1 day in our estimate).
- Solves an estimated 2.4 × 10²⁷ non-isomorphic subproblems

Estimate for all gluing subproblems (thus all gluing problems):

$$\frac{(1.62\times 10^{34})\times 622,746\times 1~\text{CPU-day}}{2.4\times 10^{27}}=4.2\times 10^{12}~\text{CPU-days}$$

The subproblem Q_0

```
00#--0---0-0000---0
00-#---0-0-0000--0-
00--#--0-0---00--
000--#0---0000-----
00---0#--000-0--00-0-
00--0--#0-0-0---00
00-0--0#0---00
00--0-0#-00--0-0
00-0--00--#0---0-000
0-0--0--0 # 0----0
0--000-0-0-0#----00-
0-00-00-0---#-0-00-0
0-00-0--0---#000-0-
0-0-0-00-------
0---0-0--00--0000#--0
0--00-----------
#000000000-----
                0 # 0 0 0 - 0 0 - - 0 - 0 - - 0 0 - - 0 - 0
                00#-00000---000-0-0--
                00-#000-00---0--00
                0000#0--0--00-0---00
                0-000#-0-0-0-00-0-0-
                0000--#--0-0-0-0-0
                000--0-#--000----
                0-000---#-00-0-0-0-0-
                0--0-00--#---0-00-00
                00-----
                -------
                -00-00-0--0#00-0000-
                --000-0-0-0#-00000-0
                --0--00--0-#0000-00
                -0--00--0-00-00#00-00
                -00---0-00--000#0-00-
                ---0-0-0-00-0000 # 0 - - 0
                --------
                -0---#0-
                -0-00-0--000-000-00--#
```

The generalized subproblem Q_{298}

Conclusion

Summary:

- Solved one of the gluing problem P_0 in 200 CPU-days. Estimate for all gluing problems: 3.2×10^{36} CPU-days
- Generalization of 298 vertices in a subproblem Q_0 . Estimate for all gluing problems: 4.2×10^{12} CPU-days

Key ideas:

- symmetry-breaking (splitting vertex, isomorphism checking)
- generalization (don't-care edges)

Future ideas:

- · deeper splitting
- simultaneous edge generalization
- faster edge selection: heuristics, graph neural networks.