Efficient and Predictable tools
with
Orthologic-Based Reasoningc

Simon Guilloud

EPFL
Lausanne, Switzerland

{firstname.lastname }@epfl.ch

Verification is hard

Verification often faces undecidable problems, or NP-Hard.
» Heuristics methods are immensely useful in practice, but offer few guarantees.

Verification is hard

Verification often faces undecidable problems, or NP-Hard.

» Heuristics methods are immensely useful in practice, but offer few guarantees.
» Instability between versions
» Non-determinism
» Bugs hard to reproduce
» Trial and Error for the user

Example: Type Checking

Sometimes, reliability is clearly more important than completeness (or expressivity)

Example: Type Checking

Sometimes, reliability is clearly more important than completeness (or expressivity)

Type checking:
Typeclass resolution, subtyping with union/disjunction types, liquid/refinement types,
proving disjointness, etc.

Example: Type Checking

Sometimes, reliability is clearly more important than completeness (or expressivity)

Type checking:
Typeclass resolution, subtyping with union/disjunction types, liquid/refinement types,
proving disjointness, etc.

Not logically complete

As expressive as possible

>
>
» Same behaviour in all contexts and machines
» Reasonably fast

>

Compatible with other elements of the compiler/type system

Efficient and Predictable building blocks

Efficient and Predicatable building blocks
for verification tools

Incomplete, but...

Clear completeness guarantees
Efficient (= polynomial)
Combines with other approaches
Reliable, Reusable, Modular

vVvYyyvyy

Orthologic

One particularly important domain: classical propositional logic
» Validity and Satisfiability are (co)NP-complete

“Is a given formula ¢ true?”

Orthologic

One particularly important domain: classical propositional logic
» Validity and Satisfiability are (co)NP-complete
“Is a given formula ¢ true?”

» Most interesting problems are computationally hard (interpolation, unification
modulo, ...)

Orthologic

> Can we obtain efficient, predictable algorithms for well-characterized weakening of
classical propositional logic?

» What about intuitionistic logic? Not better: deciding validity is
PSPACE-complete.

Orthologic

> Can we obtain efficient, predictable algorithms for well-characterized weakening of
classical propositional logic?

» What about intuitionistic logic? Not better: deciding validity is
PSPACE-complete.

» Other Possibility: Orthologic

Ortholattices

» The propositional logic whose structure is that of Ortholattices
> AV,

Classical Logic Boolean Algebras

Intuitionistic Logic | Heyting Algebras

Orthologic Ortholattices

Orthologic

Commutativity
Associativity
Idempotence
Constants laws
Double negation
Excluded middle
De Morgan's law
Absorption

xVy=yVx
xV(yVz)=(xVy)Vz
XV X=Xx
xVvV1li=1
——X = X
xV-x=1

—(xVy)=-xA-y

xV(xANy)=x

XAy =y NX

xN(yANz)=(xANy)Az

XNAX =X
xAN0=0

xN—-x=0
(xAy)=—xV-y
xN(xVy)=x

Orthologic

Commutativity xVy=yVx XAy =yAXx
Associativity xV(yVz)=(xVy)Vz | xN(y Nz)=(xNy) Nz
Idempotence xXVXx=x XA X=X
Constants laws xVvV1l=1 xN0=0

Double negation X = X

Excluded middle xV-x=1 xN-x=0

De Morgan's law —(xVy)=-xA-y (X Ay)=-xV -y
Absorption xV(xAy)=x XN (xVy)=x

» Boolean Algebra = Ortholattice + distributivity
Distributivity: ‘ xV(yANz)=(xVy)A(xVz)

Example

In orthologic, given
—(—aV(anb))

Does
(mcVb)V (=bA(cV—a))

hold?

Example

In orthologic, given
—(-aV(aAb))

Does
(mcVb)V (=bA(cV—a))

hold?
Yes (and hence so does it in classical logic)

Why is it interesting?

Orthologic has good properties:
» ((n?) normalization algorithm!

1Guilloud, Bucev, Milovantevi¢, Kun&ak. Formula Normalizations in Verification. CAV 2023.

10

Orthologic Normal Form

Definition
Let 7 be the set of terms over (A,V,—,0,1).
f T — 7T is a normal form function if

Vwi,we € Towy ~ wp <= f(wy) = f(we)

Theorem

There exists a normal form function for OL computable in O(n?).

Moreover, it computes a term of smallest size.

11

Orthologic Normal Form

Example:
[“(aAn—b)A(maVc)|Vb ~ —aVb

» Fully compatible with structure sharing
> Never increases size

> Normal form is equivalent, not just equisatisfiable

12

Orthologic Normal Form

Example:
[“(aAn—b)A(maVc)|Vb ~ —aVb

» Fully compatible with structure sharing
> Never increases size

> Normal form is equivalent, not just equisatisfiable

Efficient, predictable, modular building block

12

Why is it interesting?

Orthologic has good properties:
» (O(n?) normalization algorithm?

» Proof system with O(n®) proof search with non-logical axioms (O(n?) without
axioms)*

3Guilloud, Bucev, Milovan&evi¢, Kuntak. Formula Normalizations in Verification. CAV 2023.
*Guilloud, Kun&ak. Orthologic with Axioms. POPL 2024.

13

Proof System for Orthologic

Sequent-Calculus-like:

o, R provable <= ¢ < 1) valid in all ortholattices

Classical Logic Sequent Calculus LK

Intuitionistic Logic | max. one formula on the right

Orthologic max. two formulas total

Proof System for Orthologic

Sequent Calculus style proof system:

R Hyp

r,oR LA r
% Cut T.A Weaken

r,ot rof Ik
LL LeftAnd M RightAnd
F(onY) M (onY)
ret Tyt r,of .

T (o V) r(eVve)

r¢R roet o
L0 LeftNot — DO RightNot
T, (—¢) T (=¢)

Ta Ax(T,A) If T,Ais an axiom

" and A are arbitrary annotated formula, or no formula.

15

Proof System for Orthologic

Adding axioms makes Orthologic more expressive
» Reasoning within a body of knowledge
» Unlike classical logic, we can't put axiom directly in the formula

» Allowing axioms allows stating and prove more things

16

Proof System for Orthologic

Adding axioms makes Orthologic more expressive
» Reasoning within a body of knowledge
» Unlike classical logic, we can't put axiom directly in the formula

» Allowing axioms allows stating and prove more things

Example: set of known facts of classical logic, asserted by a solver

16

Cut elimination

Let A be a set of axioms:

Theorem
If a sequent S is provable, it has a proof where the only cut formulas are among the

axioms in A, i.e. ¥ € A.

17

Cut elimination

Let A be a set of axioms:

Theorem
If a sequent S is provable, it has a proof where the only cut formulas are among the

axioms in A, i.e. ¥ € A.

Corollary
The proof system enjoy the Subformula Property: If a sequent S is provable, it has a
proof where only subformulas of S and axioms in A appear.

17

Efficient Proof Search

The Subformula property lets us devise an efficient proof search algorithm:

Algorithm: Proof Search for OL with Axioms

1 def prove(T, A)

2 Find all rules that can conclude with ', A
3 Recursively solve the m smaller formulas
4 Memoize intermediate results

18

Efficient Proof Search

The Subformula property lets us devise an efficient proof search algorithm:

Algorithm: Proof Search for OL with Axioms

1 def prove(T, A)

2 Find all rules that can conclude with ', A
3 Recursively solve the m smaller formulas
4 Memoize intermediate results

Let n be the size of the input (axioms + goal):
» at most O(n?) different inputs

18

Efficient Proof Search

The Subformula property lets us devise an efficient proof search algorithm:

Algorithm: Proof Search for OL with Axioms

1 def prove(T, A)

2 Find all rules that can conclude with ', A
3 Recursively solve the m smaller formulas
4 Memoize intermediate results

Let n be the size of the input (axioms + goal):
» at most O(n?) different inputs
> m=0(1+A])

18

Efficient Proof Search

The Subformula property lets us devise an efficient proof search algorithm:

Algorithm: Proof Search for OL with Axioms

def prove(T, A)
L Find all rules that can conclude with ', A

A W N =

Recursively solve the m smaller formulas
Memoize intermediate results

Let n be the size of the input (axioms + goal):
» at most O(n?) different inputs
> m=0(1+A])
» Running time: O(n?- (1 + |A]))

18

Why is it interesting?

Orthologic has good properties:
» (O(n?) normalization algorithm3

» Proof system with O(n%) proof search with non-logical axioms (O(n?) without
axioms)?

» Classicaly complete for important classes of formulas

3Guilloud, Bucev, Milovan&evi¢, Kuntak. Formula Normalizations in Verification. CAV 2023.
2Guilloud, Kun&ak. Orthologic with Axioms. POPL 2024.

19

Classical completeness

OL with axioms is complete for Horn clauses and extensions of Horn clauses

Horn clause {—ay, ..., ~an, b} becomes (a1 A ... A ap)t, bR

Theorem
A set of Horn clauses is satisfiable in OL if and only if it is satisfiable in CL.

Also true for renamed Horn, extended Horn and 2SAT

20

Predicate Orthologic

» Propositional Orthologic can be extended to Predicate Orthologic (with axioms)

» Of interest: Effectively Propositional Orthologic (i.e. predicates, constants and
variables but no functions nor quantifiers)

21

Predicate Orthologic

» Propositional Orthologic can be extended to Predicate Orthologic (with axioms)

» Of interest: Effectively Propositional Orthologic (i.e. predicates, constants and
variables but no functions nor quantifiers)

» Complete for Horn Clauses = Extension of Datalog

21

Why is it interesting?

Orthologic has good properties:
» (O(n?) normalization algorithm?

» Proof system with O(n®) proof search with non-logical axioms (O(n?) without
axioms)3

» Classicaly complete for important classes of formulas

v

Has interpolation property*

» Other useful and interesting logical properties.

3Guilloud, Bucev, MilovanZevi¢, Kuntak. Formula Normalizations in Verification. CAV 2023.
3Guilloud, Kuntak. Orthologic with Axioms. POPL 2024.
*Guilloud, Gambhir, Kun&ak. Interpolation and Quantifiers in Ortholattices. VMCAI 2024

22

Interpolation

Theorem

Let A and B be propositional formulas. If A B then there exists a formula | such
that:

A<I<B
and FV(I) € FY(A) N FV(B).

Proof.
Show it for sequents. By induction on the proof of AL, BF

23

Additional Properties

» OL admits a Tseitin-like normal form
» OL can be simulated by width 5 resolution
» More properties of Effectively Propositional OL

24

Coq formalization

Formalized OL proof system (without axioms) in Coq®.

» Mechanized Cut Elimination
» Soundness of orthologic proof search, with memoization and reference equality

» Tactic (using reflection) for OL equivalence and normalization, including for the

bool type.

®Guilloud, Pit-Claudel. Verified and Optimized Implementation of Orthologic Proof Search.

Preprint.
25

Stainless: Program Verification using OL

Stainless is a tool for verification of Scala programs.
> Generates Verification Conditions (VC) that are then submitted to SMT solvers

» VCs are simplified and cached with respect to orthologic.

26

Stainless: Program Verification using OL

—— -

00
R
LKL

9.
RR

>
<>
XX

9
R

5

Old
OCBSL
SR | &3 oL

m F QOI RedBlack SortedArrayConc‘Rope

Time ratio
XXX X
ZRRKS

9,
R

5
R

» The grey-filled boxes represent the time saved thanks to extra caching.
» Simplification occasionally made the solvers’ life harder (hand tuned assertions).

» OCBSL = Orthocomplemented Bisemilattices®

®Guilloud, Kun&ak. Equivalence Checking for Orthocomplemented Bisemilattices in Log-Linear
Time. TACAS 2022.

27

Lisa's Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~p; ¢ hold?

28

Lisa's Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~p; ¢ hold?

> Worst case O(n?) time

» Also alpha-equivalence, symmetry and reflexivity of equality...

28

Lisa's Equivalence Checker

LISA’s Kernel contains an algorithm to decide:

Given two formulas ¢ and 1, does ¢ ~p; ¢ hold?

> Worst case O(n?) time
» Also alpha-equivalence, symmetry and reflexivity of equality...
» Proof Checker uses it instead of syntactic equality.

Other example:

1 assume((a\/b) /\ (a\/c)\/b)
2 have(a \/ b) by Restate

28

application: DPLL-like Propositional Solver

For a formula f:
» Simplify
» If itis T returns true. If it is L, returns false
> Pick a literal ain f
» Solve recursively fla:= T] and f[a:= 1]
Idead: simplify with Orthologic.

29

Propositional Solver tactic

1 def dpll(f: Formula) =

2 val f = reducedForm(_f) //computes OL—normal form
3 if f == T then have(f) by Hypothesis

4 else if f == L then fail(" Not-a-tautology")

5 else

6 val a = findBestAtom(f)

7 val stepl = subproof : //solve recursively

8 have(dpll(f(a := T)))

9 thenHave(a |— f) by Substitution(T <= a)
10 val step2 = subproof : //solve recursively

11 have(dpll(f(a := 1)))

12 thenHave(la |— f) by Substitution(L <= a)

13 have(f) by Cut(stepl, step2)

30

Orthologic Type System

> Type system with subtyping (<:), union (|), intersection types (&) : lattice
» Intuitively, t: Ty| T iff t: Ty or t: Ty

31

Orthologic Type System

> Type system with subtyping (<:), union (|), intersection types (&) : lattice
» Intuitively, t: Ty| T iff t: Ty or t: Ty
» Examples: Scala, Flow, TypeScript

31

Orthologic Type System

> Type system with subtyping (<:), union (|), intersection types (&) : lattice
» Intuitively, t: Ty| T iff t: Ty or t: Ty

» Examples: Scala, Flow, TypeScript

> |If we add negation types: Ortholattice

» Intuitively, t : =T iff not t: T

31

Orthologic Type System

Type system with subtyping (<:), union (]), intersection types (&) : lattice
Intuitively, t: T1|To iff t: Ty or t: Ty

Examples: Scala, Flow, TypeScript

If we add negation types: Ortholattice

Intuitively, t : =T iff not t : Ty

Idea: decide A <: B by checking A+ B in orthologic!

vVvYVvyVvVvyyvyy

31

Orthologic Type System

» We also want to support type constructors, such as List[T] or arrow types,
A= B

32

Orthologic Type System

» We also want to support type constructors, such as List[T] or arrow types,
A= B

> Some are covariant or contravariant:

A <: B —> List[A] <: List[B]

32

Orthologic Type System

» We also want to support type constructors, such as List[T] or arrow types,
A= B

» Some are covariant or contravariant:
A <: B —> List[A] <: List[B]

Luckily, OL normalization and proof search with axioms can be extended to
support (anti)monotonic functions and still work (O(n?) - |A|)

32

Orthologic Type System

Many common and less common constructs can be encoded in such system:

» Inheritence relations become classes

33

Orthologic Type System

Many common and less common constructs can be encoded in such system:
P Inheritence relations become classes

» Bounded polymorphism
def foo[T<: Int](x: T): T = ...

33

Orthologic Type System

Many common and less common constructs can be encoded in such system:

» Inheritence relations become classes

» Bounded polymorphism
def foo[T<: Int](x: T): T = ...

» Types of things that are not null, things that are not functions, ...

33

Orthologic Type System

Many common and less common constructs can be encoded in such system:

» Inheritence relations become classes

» Bounded polymorphism
def foo[T<: Int](x: T): T = ...

» Types of things that are not null, things that are not functions, ...
» Record types with depth, width and permutation subtyping

33

Orthologic Type System

Many common and less common constructs can be encoded in such system:

» Inheritence relations become classes

» Bounded polymorphism
def foo[T<: Int](x: T): T = ...
» Types of things that are not null, things that are not functions, ...

» Record types with depth, width and permutation subtyping

» Equirecursive types

33

Orthologic Type System

Many common and less common constructs can be encoded in such system:

» Inheritence relations become classes

» Bounded polymorphism
def foo[T<: Int](x: T): T = ...

Types of things that are not null, things that are not functions, ...
Record types with depth, width and permutation subtyping
Equirecursive types

and more

33

Acknowledgement

> Viktor Kunéak
» Sankalp Gambhir

» Clément Pit-Claudel, Mario Bucev, Dragana Milovancevié

34

Conclusion

» Orthologic
» Efficient and Predictable Building Block
» Normalization algorithm, proof system
> Good logical properties (interpolation, ...)
» Tons of applications, many more to explore!

35

Example

Assume —(—a V (a A b)). Deduce:

aA(—aV-b) NNF
a, (—aV-b)

(-1V -b) substituting a =1
-b

Then,
(e Vb))V (=bA(cV—a))
~(=cV0)V(1A(cVv0)) substitutinga=1,b=0
~-cVc
~1

36

