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Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)
e E, iProver, SPASS, Vampire, ...

Heuristic to boost: clause selection
@ arguably the most important choice point

@ “selecting just the proof clauses” intuition

Three main contributions:
@ a RL-inspired learning operator
@ a new neural architecture (GNN + RvNNs + MLP)

@ 20 % performance boost of Vampire under neural guidance
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At a typical successful end: |Passive| > |Active| > |Proof |
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How close can we actually hope get to the perfect clause selection?
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)
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Inspired by the great successes:
e ATARI games (DQN)

V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.

@ Board games (AlphaZero)

D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 2018.

@ “l wan't to try it on my pet problem too!”

What'’s really unique about RL?

@ It programs itself (sometimes even optimally, in the limit)

@ It could discover fundamentally novel tricks and hacks!



Key Reinforcement Learning Concepts

policy (in deep-RL,
this is a neural
network)

observation 7 -

sl

environment

*Illustration from anyscale.com.


anyscale.com

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic



Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set




Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment



Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777



Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...
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Design Decisions

Guiding Principle

The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
@ the evolving state of an ATP is a large amorphous blob
o there is no state in the SoTA clause-selection heuristics

o let's discard state too = assumption of state-less environment

Reward
o refusing the play the honest, super-sparse reward game

@ like in ENIGMA: a proof clause is a good clause
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Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple
T= (P,C,C+, {Pi}ielr)-

Learning operator (for clause selection)
@ input: neural network Ny (learnable params ), set of traces T

@ output: updated parameters &,
such that Ny is better at solving problems like those from T

Logits and Policy
Assuming Ny produces a score Ng(C) = I¢ for each clause C, then

Ic

e

TC,o = SOftmaXC({/D}DeP) = m
€

is the (stochastic) clause selection policy defined by Ny
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Policy Gradient Theorem [Williams'92]

To improve a policy in terms of the expected return we update
0 <+ 0+ arcVglog TC,0,

where r¢ is the return / reward at the corresponding step.




The RL-Inspired Operator

Policy Gradient Theorem [Williams'92]

To improve a policy in terms of the expected return we update
0 <+ 0+ arcVglog TC,0,

where r¢ is the return / reward at the corresponding step.

Our Operator:
Each moment in time / is an independent opportunity to improve,
with

5,-T = mean(_—eplfvo Iog 7TC79,

for a trace T = (P,C,C", {Pi}ici;) and Pt = P;NC*F. Then

o7 = mean,-E,Td,-T and § = meanye7d .
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Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
@ Graph Neural Networks
@ name-invariant formula representations
o relatively expensive; the more context the better

@ here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
@ Recursive Neural Networks
@ g-age: grow along the clause derivation tree
@ g-weight: grow along the clause syntax tree

@ share substructures (dag) and cache results



Architecture Diagram

one-off GNN g-weight RVNN
sorts F\ -'
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Implementation

Single Clause Queue:
e ordered by the computed logits Ng(C) = Ic
e Could we also sample?

Delayed Insertion Buffer:
@ insertions into passive are lazy

@ only evaluate things in buffer when selection is called

Iterative Improvement Loop:
@ run (guided/plain) prover, collect traces, train from traces

@ repeat
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Setup:
e TPTP v9 CNF+FOF, 19477 problems (train/test split)
e Vampire's default strategy (1:1 age-weight alternation)
@ limit of 30000 Mi (~10s) per proof attempt
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Experiments [l

Solving Hard Problems:
@ overfit to TPTP with 100 000 Mi-limited
@ ran for 12.4days
@ solved 130 rating 1.0 (49 never solved, 8

Put Into Perspective:
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PhD & PostDoc Position Open!
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ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -
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Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA A A A A

Logits:

@ even a binary classifier internally uses a real value
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Combine with the original strategy
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