Deepire Il = RL(GNN+2RvNN)

Martin Suda*

Czech Technical University in Prague, Czech Republic

AITP 2025, Aussois, September 2025

*Supported by the Czech Science Foundation standard project24-12759S:

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)
e E, iProver, SPASS, Vampire, ...

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)
e E, iProver, SPASS, Vampire, ...

Heuristic to boost: clause selection
@ arguably the most important choice point

@ “selecting just the proof clauses” intuition

Machine-Learning-Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)
e E, iProver, SPASS, Vampire, ...

Heuristic to boost: clause selection
@ arguably the most important choice point

@ “selecting just the proof clauses” intuition

Three main contributions:
@ a RL-inspired learning operator
@ a new neural architecture (GNN + RvNNs + MLP)

@ 20 % performance boost of Vampire under neural guidance

@ Saturation and Clause Selection
© RL-Inspired Guidance
© Neural Clause Evaluation

Q Deepire Il + Experiments

@ Saturation and Clause Selection

Saturation-based Theorem Proving

CLAUSE SELECTION IN
SATURATION-BASED THEOREM
PROVING

Saturation-based Theorem Proving

CLAUSE SELECTION IN
SATURATION-BASED THEOREM
PROVING

AvBB

[cvo] [E]

(Bvop] [E-D]

&
:

At a typical successful end: |Passive| > |Active| > |Proof |

The Proof Is Often Just A Tiny Part

I:

N7
%

/

The Proof Is Often Just A Tiny Part

I:

N7
%

/

How close can we actually hope get to the perfect clause selection?

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

/A:l A:2 A:3 A4 A5 A:G\ b
1@\\/\/:4 w:3 A\ w:3 Aw:s Aw:3 A\ wie | PV 38

10

© RL-Inspired Guidance

Why Reinforcement Learning?

Why Reinforcement Learning?

Inspired by the great successes:
e ATARI games (DQN)

V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.
@ Board games (AlphaZero)
D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go

through self-play. Science, 2018.

@ “l wan't to try it on my pet problem too!”

Why Reinforcement Learning?

Inspired by the great successes:
e ATARI games (DQN)

V. Mnih et al. Playing ATARI with deep reinforcement learning. CoRR, 2013.

@ Board games (AlphaZero)

D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 2018.

@ “l wan't to try it on my pet problem too!”

What'’s really unique about RL?

@ It programs itself (sometimes even optimally, in the limit)

@ It could discover fundamentally novel tricks and hacks!

Key Reinforcement Learning Concepts

policy (in deep-RL,
this is a neural
network)

observation 7 -

sl

environment

*Illustration from anyscale.com.

anyscale.com

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

Saturation as an Reinforcement-Learning Environment

Agent

o the clause selection heuristic

Action

@ the next clause to select from the current passive set

State / Observation
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...

Design Decisions

Guiding Principle

The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

Design Decisions

Guiding Principle

The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
@ the evolving state of an ATP is a large amorphous blob
o there is no state in the SoTA clause-selection heuristics

o let's discard state too = assumption of state-less environment

Design Decisions

Guiding Principle

The new design accommodates the old heuristic as an attainable
point in the space of possible solutions.

State / Observation
@ the evolving state of an ATP is a large amorphous blob
o there is no state in the SoTA clause-selection heuristics

o let's discard state too = assumption of state-less environment

Reward
o refusing the play the honest, super-sparse reward game

@ like in ENIGMA: a proof clause is a good clause

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple

T = (P,C,C+, {Pi}ielr)-

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple
T =(P,C,CT {Pi}ictr)-

Learning operator (for clause selection)
@ input: neural network Ny (learnable params), set of traces T

@ output: updated parameters &,
such that Ny is better at solving problems like those from T

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple
T= (P,C,C+, {Pi}ielr)-

Learning operator (for clause selection)
@ input: neural network Ny (learnable params), set of traces T

@ output: updated parameters &,
such that Ny is better at solving problems like those from T

Logits and Policy
Assuming Ny produces a score Ng(C) = I¢ for each clause C, then

Towards the RL-Inspired Learning Operator

A trace of a successful proof attempt on problem P is a tuple
T= (P,C,C+, {Pi}ielr)-

Learning operator (for clause selection)
@ input: neural network Ny (learnable params), set of traces T

@ output: updated parameters &,
such that Ny is better at solving problems like those from T

Logits and Policy
Assuming Ny produces a score Ng(C) = I¢ for each clause C, then

Ic

e

TC,o = SOftmaXC({/D}DeP) = m
€

is the (stochastic) clause selection policy defined by Ny

The RL-Inspired Operator

Policy Gradient Theorem [Williams'92]

To improve a policy in terms of the expected return we update
0 <+ 0+ arcVglog TC,0,

where r¢ is the return / reward at the corresponding step.

The RL-Inspired Operator

Policy Gradient Theorem [Williams'92]

To improve a policy in terms of the expected return we update
0 <+ 0+ arcVglog TC,0,

where r¢ is the return / reward at the corresponding step.

Our Operator:
Each moment in time / is an independent opportunity to improve,
with

5,-T = mean(_—eplfvo Iog 7TC79,

for a trace T = (P,C,C", {Pi}ici;) and Pt = P;NC*F. Then

o7 = mean,-E,Td,-T and § = meanye7d .

© Neural Clause Evaluation

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
Graph Neural Networks

name-invariant formula representations

relatively expensive; the more context the better

here: only apply to the input CNF (i.e., only one GNN call)

Neural Clause Evaluation

Aim for a balance between expressivity and speed of inference!

One-off GNN Invocation:
@ Graph Neural Networks
@ name-invariant formula representations
o relatively expensive; the more context the better

@ here: only apply to the input CNF (i.e., only one GNN call)

Generalizing Age and Weight with RvNNs:
@ Recursive Neural Networks
@ g-age: grow along the clause derivation tree
@ g-weight: grow along the clause syntax tree

@ share substructures (dag) and cache results

Architecture Diagram

one-off GNN g-weight RVNN
sorts F\ -'
— i\. :
§ symbols
a variables
% subterms %
clauses 4

k message-passing rounds g age RVNN

e Deepire Il + Experiments

Implementation

Single Clause Queue:
e ordered by the computed logits Ng(C) = Ic
e Could we also sample?

Implementation

Single Clause Queue:
e ordered by the computed logits Ng(C) = Ic
e Could we also sample?

Delayed Insertion Buffer:
@ insertions into passive are lazy

@ only evaluate things in buffer when selection is called

Implementation

Single Clause Queue:
e ordered by the computed logits Ng(C) = Ic
e Could we also sample?

Delayed Insertion Buffer:
@ insertions into passive are lazy

@ only evaluate things in buffer when selection is called

Iterative Improvement Loop:
@ run (guided/plain) prover, collect traces, train from traces

@ repeat

Setup:
e TPTP v9 CNF+FOF, 19477 problems (train/test split)
@ Vampire's default strategy (1:1 age-weight alternation)
@ limit of 30000 Mi (~10s) per proof attempt

Setup:
e TPTP v9 CNF+FOF, 19477 problems (train/test split)
@ Vampire's default strategy (1:1 age-weight alternation)
@ limit of 30000 Mi (~10s) per proof attempt

0.60

c

2 0.58 A
e

2 0,56
%)

£
 0.54
2 %
5 0.524 /7
()

g 0.50
c

g 0.481
[

2 0.46

0 3 6 9 12 15 18 21 24
improvement loop iteration

Setup:
e TPTP v9 CNF+FOF, 19477 problems (train/test split)
e Vampire's default strategy (1:1 age-weight alternation)
@ limit of 30000 Mi (~10s) per proof attempt

0.60
- 8 105 o
2 0.58 A =
< 2 104 4
2 0.56 E .
0 o -
§ 054 T .o ’

. T s i
8 g
5 0.52 1 <
o < 102 4 .
2 0.50 32 .
o © EA
S 0.48- 2 104
5 R :
2 0.46 - *

—_— 10° T : : : :
0 3 6 9 12 15 18 21 24 10° 10' 102 103 10* 10°

improvement loop iteration # actvations default strategy

Experiments [l

Solving Hard Problems:
@ overfit to TPTP with 100000 Mi-limited runs
@ ran for 12.4days
e solved 130 rating 1.0 (49 never solved, 8 status UNK)

Experiments [l

Solving Hard Problems:
@ overfit to TPTP with 100 000 Mi-limited
@ ran for 12.4days
@ solved 130 rating 1.0 (49 never solved, 8

Put Into Perspective:

r 0.65
- 0.60
r 0.55
r0.50
r0.45
- 0.40
r0.35

ercentage test problems proven

-

<
o
w
o
p

103 104 10°
time (Mi)

runs

status UNK)

---- boost(all100k)
—— boost(30k)
----nwc=5
—default

Conclusion

Summary:
@ new efficient name-invariant neural architecture
@ new learning operator inspired by reinforcement learning

@ implementation in Vampire

o 20 % performance boost of the default strategy
e trained model can solve many very hard
(previously unsolved) TPTP problems

Conclusion

Summary:
@ new efficient name-invariant neural architecture

@ new learning operator inspired by reinforcement learning
@ implementation in Vampire

o 20 % performance boost of the default strategy
e trained model can solve many very hard
(previously unsolved) TPTP problems

Outlook:
e ENIGMA-style vs RL-inspired learning
@ other benchmarks than TPTP; e.g. Mizar40; transfer learning

@ neural guidance and theorem proving strategies

Conclusion

Summary:
@ new efficient name-invariant neural architecture

@ new learning operator inspired by reinforcement learning
@ implementation in Vampire

o 20 % performance boost of the default strategy
e trained model can solve many very hard
(previously unsolved) TPTP problems

Outlook:
e ENIGMA-style vs RL-inspired learning
@ other benchmarks than TPTP; e.g. Mizar40; transfer learning

@ neural guidance and theorem proving strategies

PhD & PostDoc Position Open!

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task

@ integrate back with the prover:

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA AA A A

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

o I/n2 RN a5 ne AN
WA AA A A

Logits:

@ even a binary classifier internally uses a real value

. RO A
A ACAUVUNSANTA

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA A A A A

Logits:

@ even a binary classifier internally uses a real value

o S ao) w2\ xs D
A A AVUANGANITA 4

Combine with the original strategy
n: 1 A:2 A:3 A: 4 A:5 A:G\

1 < w:a AW:3 Aw:3 Aw:s Aw:3 Aw:e
S MO 1/ 10 a2 Y s as Y a1 asY as)
’ _ Q/:a w:3 A\ W:3 AW:4 A\W:6 A\ W:8)

A3

2 A:2 8
W:3 W:3

	Saturation and Clause Selection
	

	RL-Inspired Guidance
	

	Neural Clause Evaluation
	

	Deepire II + Experiments
	

	Appendix

