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miniF2F - from Challenge...

High-school level competition mathematics in Lean4
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miniF2F - from Challenge... to Saturation

High-school

Pass Rate on miniF2F-test (%)

level competition mathematics in Lean4
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IMO as a Test for Formal Theorem Proving

e Algebra and Number Theory IMO problems are easy to state
but hard to prove in Interactive Theorem Provers.
e Requires sophisticated multi-step reasoning.

e New problems every year, avoids contamination risks.

Natural Language Statement Lean 4 Statement
DO o Boalmssaensscngeel sl theorem imo_1969_p2 (m n : R) (k : 1) (a: 1 — ) (y : R — ) (ho : 0 <K)
(hi: V x,yx =) iin Finset.range k, Real.cos (ai+x)/2%i) (h2:ym=0)
(o} = iy +I)+%cos(az+z)+icos(a3+r) (hs:yn=0): 3t:Z m-n=t*Real.pi:= by

1
+ -+ + =— cos(an + ).

3 Generated proof spans 520 lines
Given that f(z,) = f(z,) = 0, prove that z, — z; = mx for some integer m. and uses 7 sub-lemmas



Previous Approaches & Limitations

Whole Proof Generation

theorem irrational_sqrt_two_from_scratch :
Irrational (Real.sqrt 2) := by

rintro (q, hq)

obtain (a, b, hb_pos, h_coprime, h_eq_rat): 3 ab:Z,
O0<b Aagcdb=1Aqg=(a:Q)/b:=by
have := q.num_den_reduced
use g.num, q.den
refine' (q.den_pos, g.reduced, rfl)

Standard LLMs struggle with deep,
non-linear formal reasoning.

Step Prover

lemma sub_ne_zero_of_ne (h: a#b) : a-b=+0:=
begin e e
11 goal a b:Zh:ta#bFka-b#o,
"""l goal a b:Z h:a # b hab:a - b = @  false |
apply h,
[——llgoalabilhiaxbhabia-b=8ra=b]
|app1y int.eq_of_sub_eq_zero hab,
t------------------!goals accomplished
end
7777 proof state

<+——proof step prediction [
<« - --proof state transformation [1 proof step

Complex search algorithm
Less inference efficient

— Limited performance scaling with model size.



Input

natural language problem statement Idea: Chain of (Formal) Thought Reasoning

formal language problem statement

Bring o1-style reasoning to Formal Maths:

$Kimina-Prover e Reasoning CoT that captures
F— \ step-prover behaviour
utpu
f P e Whole-proof model inference efficiency

Reasoning Block 1
informal reasoning + Lean 4 code snippet

Reasoning Block 2
informal reasoning + Lean 4 code snippet

Reasoning Block n «

informal reasoning + Lean 4 code snippet
Flattened
Final Lean 4 Code Search Tree

k complete Lean 4 code J




Activation Data

Need: Samples solutions in our output format

e Special tags <think>, ""lean "~ code markers
— intersperse informal and formal
e Transform 20K samples to our format by
few-shot prompting Claude Sonnet 3.7
— used for fine-tuning
e Further fine-tune with informal math reasoning data
— includes more types of reasoning

— Obtain model able to mix informal and formal

Input

natural language problem statement

formal language problem statement

$ Kimina-Prover
r Output \

Reasoning Block 1
informal reasoning + Lean 4 code snippet

Reasoning Block 2
informal reasoning + Lean 4 code snippet

Reasoning Block n
informal reasoning + Lean 4 code snippet

Final Lean 4 Code

k complete Lean 4 code J




Problem Dataset

Need: Lots of problems to do RL with

e Manual formalization by expert human
annotators

e Statement-autoformalization for scaling
Challenge: lack of direct reward
— use LLM as a judge

— Largest public Lean statement dataset

‘ Open-sourced on HuggingFace

Number of Statements Formalized

Human
20,152
19.3%

Autoformalizer
84,003
80.7%



The Kimina Prover RL Pipeline

Activation Data

Roll-out Data

i

Examples in
Formal Reasoning
Pattern 200K

Autoformalized
statements 100K
+
Human-annotated
statements 10K x 10

Policy Update Assign Reward
Filtered Roll- |
out dataset
with reward
v
mink ST "  Kimina-Prover RL Policy Iteration Lean Server
(initialization only)
(Agent) (Environment)
A

i} Examples in
Reasoning Chec'(ing
. ) Pattern 8K x
Sampling Problems with 32K tokens.
3 informal and
(at each iter) torinal

statements 1K

Discarded



Infrastructure: verl

- RL-framework for LLMs
- Implements “Hybridflow” approach:

RL as a dataflow, combining control and computation flows.
- Integration with FSDP, Megatron-LM, vLLM and SGLang.

volcengine/verl ‘

verl: Volcano Engine Reinforcement Learning for
LLMs

ssssssssssssssssssssssssssssssss

o~ §G|l ILLM

Easy, fast, and cheap LLM serving for

<A NVIDIA
MEGATRON-LM

Process 6-10 (Update Epoch*Batch/Mini Batch) times Per Batch




Infrastructure: Lean Server

Challenge: Verify lots of Lean proofs quickly and efficiently,
and reliably in a distributed setting

e Supports parallel Lean REPL processes.
e Reuses imports across multiple requests (LRU cache).

Mode Total Verification Time (mm:ss) Average Verification Time (s/it) # CPUs Total Verification Time (mm:ss) Average Iterations Rate (it/s)
Cached 05:50 3.65
Non-Cached 08:14 5.14 8 20:11 0.83
16 09:57 1.67
Table 2: Performance comparison of cached vs. non-cached verification on a 32 05:54 2.82
MacBook Pro M2 with 32GB RAM and 10 CPUs on the first 100 samples from the 60 03:51 4.33

Goedel-LM/Lean-workbook-proofs dataset. Caching leads to significantly faster
verification times.

Table 1: Performance scaling of proof verification with different CPU configurations
(60-core Intel Xeon CPU @ 3.10GHz) on the first 1000 samples from the Goedel-
LM/Lean-workbook-proofs dataset. Increasing the number of CPUs consistently
translates into higher average iterations rates.



Kimina Prover Preview: Changing the ATP Landsca

@& KIMINA-PROVER PREVIEW: TOWARDS LARGE FORMAL
REASONING MODELS WITH REINFORCEMENT LEARNING

We believe formal math is the future.

‘Introducmg Kimina-Prover Preview, a Numina &

Numina & Kimi Team ‘ t collaboration, the first large formal reasoning model for
Lean 4, achlevmg 80.78% miniF2F.

TECHNICAL REPORT OF KIMINA-PROVER PREVIEW

ABSTRACT

‘We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven " .
exploration paradigm for formal theorem pljgoving,gl::sgshowcased in Ehis preview release. Trair%ed with Performance Comparison Of_ Large Reasoning Models
alarge-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong by Evaluation Type
performance in Lean 4 proof generation by employing a structured reasoning pattern we term formal

pattern. This approach allows the model to emulate human problem-solving strategies in ; e f”““}‘ji;?”
Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the = ol 7";\/:,; :;?::Z 32)
miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance, B OpenAl 03-mini (pass@32)

our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering
strong results even with minimal sampling (pass@1) and scaling effectively with computational
budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear 68.8%
performance scaling with model size, a trend previously unobserved for neural theorem provers

in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms,

3
shows potential to bridge the gap between formal verification and informal mathematical intuition. &
We open source distilled versions with 1.5B and 7B parameters of Kimina-Prover'. 9
c
- c© 46.7%
Pass Rate on MiniF2F-test £ .
E
£
80 5
Whole-Proof Generation Tree Search Method a
8- Kimina Prover Preview | | k- DocpScekcProver V1.5 ALRmaxTS
75 v roenis (o e e 24.6%

Leanabel-prover B Prover
9= Selfplay Theorem Prover

3
& 70| 13.3%
.

9 9
v 5.0% 6.7%

65
ﬁ []00%
- - miniF2F IMO ( forrnallzed AIME(formalized)
[-% Evaluation Type

Note: While Gemini 2.5 and OpenAl 03 solve all 15 AIME probl nformal reasoning,
55 both models stru I etween informa
reasoning capacity and formal re
50

10T 10 10 107 10 10°
Sample Budget




Emergent Human-like Proof Style

The model learns complex reasoning patterns beyond simple step generation:
» Exploring multiple paths, reflection, refining thinking.

 Generating structured, decomposed proofs (e.g., using have statements)

« Reasoning length correlates with proof complexity

theorem imo_1962_p2 (x : R) (hp : 0 < 3 - x) (h; : 0 < x + 1)
(hy : 1/ 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x <1 - Real.sqrt 31 / 8 := by
have h3 : -1 < x := by
nlinarith
have h4 : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by linarith
have h5 : Real.sqrt (x + 1) > O := Real.sqrt_nomneg (x + 1)
have h6 : (7 / 4 - 2 * x) > Real.sqrt (x + 1) := by
nlinarith [Real.sq_sqrt (show (0 : R) < 3 - x by linarith), Real.sq_sqrt (show (0 : R) < x +
1 by linarith),
Real.sqrt_nonneg (3 - x), Real.sqrt_nonneg (x + 1)]
have h7 : (7 / 4 - 2 * x) = 2 > (Real.sqrt (x + 1)) ~ 2 := by
nlinarith [h6, Real.sqrt_nonneg (x + 1)]
have h8 : (7 /4 -2 % x) ~ 2> x+ 1 :=by
have h10 : (Real.sqrt (x + 1)) ~ 2 =x + 1 := by
rv [Real.sq_sqrt]
linarith
nlinarith [h7, h10]
have h9 : 64 * x = 2 - 128 * x + 33 > 0 := by
nlinarith [h8]
have h10 : x < 1 - Real.sqrt 31 / 8 := by
by_contra hx
push_neg at hx
have h12 : Real.sqrt 31 > 0 := by
apply Real.sqrt_pos.mpr
norm_num
nlinarith [sq_nonneg (x - (1 - Real.sqrt 31 / 8)), sq_nonneg (Real.sqrt 31), Real.sq_sqrt
(show (0 : R) < 31 by norm_num),
h12]
exact (h3, h10)

theorem imo_1962_p2 (x : R)
(h0 : 0 <= 3 - x)
(b1 : 0 <=x + 1)
(h2 : 1/2 < sqrt(3 - x) - sqrt(x + 1)) :
-1 <= x and x < 1 - sqrt(31)/8 := by {
constructor
linarith
rw [« sub_pos]
field_simp [Real.sqrt_lt] at h2 |-
apply 1lt_of_le_of_lt
rv [mul_comm]
rw [sub_eq_add_neg]
apply 1t_of_le_of_lt
rw [« 1lt_sub_iff_add_1t]
ring_nf
rw [+ 1t_sub_iff_add_1t]
linarith [Real.sq_sqrt (by linarith : 0 <=1 + x)]
rw [Real.sqrt_1lt (by norm_num)]
rw [Real.sqrt_1t] <;> nlinarith
norm_num at this

Listing 3: Lean 4 proof of IMO-1962-P2 found by Kimina-Prover.

Listing 4: Lean 4 proof of IMO-1962-P2 found by BFS-Prover.




Performance Scaling with Model Size

Observation:

Clear performance

improvement as model size

increases (1.5B -> 7B -> 72B
parameters).

« 72B model significantly
outperforms 7B,
especially with larger
sample budgets (+7.87%
at pass@1024).

 This scaling trend was
not clearly observed in
previous neural theorem
provers for formal math.

Pass Rate (%)
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Test Time Scaling

Observation:

Performance (pass@32)
improves as the model
learns to generate longer,
more complex outputs
Formal reasoning length
scaling is more volatile
than informal math but
ultimately successful.
Potential applications to
other data-limited
domains.

miniF2F Test Accuracy (Pass@32)
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Multi-Turn Interactions

Idea: Extend the CoT approach to allow multiple LLM-Lean interactions

e If Lean rejects the proof a new prompt is generated which includes the
error message(s).

e Continue with repairing the proof attempt using the Lean feedback.

Cold-Start Data (again):

e To get the pipeline running, we sample cold-start data in our error fixing
format using Claude Sonnet 4.

e We pair up syntactically similar failing and successful proof attempts and
generate a dataset to teach the model the error-fixing pattern.



Error Fixing Improvements

16+16 attempt-and-fix 32X 1 brute-force 32+32 attempt-and-fix

kimina-prover 35.6 28.8 44.1

Table 2: Performance comparison between error-fixing and brute-force strategies on a selected
subset of 59 MiniF2F-Test problems with the lowest win rates. Under equal sample budgets, the
error-fixing strategies (16+16) outperform the brute-force baseline (32X 1), demonstrating

improved sample efficiency.



Lemma-Enabled Reasoning Pattern

i Sub-lemma Generation

Complex problems require breaking @
down the proofs into smaller steps: .| General-purpose |
: LLM
e Two step-pipeline combining a —
general purpose LLM with D

Kimina-Autoformalizer 7B to
generate sub-lemmas. : —
e Equip the model with the ability === \_ -
to identify and utilize useful ,
lemmas provided in the input. -

Informal
statements

Kimina-
Autoformalizer 7B




Test Time Reinforcement Learning Search

A trainable agentic proving framework that enables the model to recursively:
e discover,
e combine and,
e apply
lemmas to construct complex proofs, building on a novel lemma-enabled pattern.

Sub-lemma Generation RL Training Negation Filter

@, ( Problem Set )

Original @]
General-purpose Statement .
LLM ¥ Kimina-Prover 8B

Lemmas & Variants

oieie) -]
Lemma Utilization Score
Candidates R R

A4 wl/ V.
i :

\§ _J Discarded

£

E Legends
g D’") Search scope

Kimina- RLtrainingwith | i 7
Autoformalizer 7B Kimina-Prover 72B :I Large Language Models

Update Score
No

gation
Proved?

Informal
statements




Kimina Prover Release

Pass Rate on MiniF2F-test
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IMO Releases

ByteDance Seed Prover Achieves Silver Medal Score in
IMO 2025

Aristotle Achieves Gold Medal-Level
Performance at the International
Mathematical Olympiad, iOS App Beta Launch ;22025

DeepMind and OpenAl claim gold in
International Mathematical Olympiad

Two Al models have achieved gold medal standard for the first time in a prestigious competition for young
mathematicians — and their developers claim these Als could soon crack tough scientific problems

By Alex Wilkins
By 22 July 2025



Number of Proofs Formalized

Open-Source Releases a9

Human
11,380 /£
31.2% |/

Dataset NuminaMath-LEAN \—
huggingface.co/datasets/Al-MO/NuminaMath-LEAN

Kimina-Prover

25,052
68.8%
Training Pipeline KiminaProver-RL
' 0 github.com/project-numina/kimina-prover-rl

Infrastructure: Lean Server & Client

O github.com/project-numina/kimina-lean-server
pypi.org/project/leanclient


http://huggingface.co/datasets/AI-MO/NuminaMath-LEAN
http://github.com/project-numina/kimina-prover-rl/
http://github.com/project-numina/kimina-lean-server
https://pypi.org/project/leanclient/%5C

Kimina Prover Demo

KIMINA

Interactive Mathematical Proof Assistant <

@ Blog Post @ Kimina-Prover 72B

Statements A~

® Enter your mathematical statement in natural language:

Given that the real numbers $a$ and $b$ satisfy:
\[ a*3 - 3ab”2 = 39, \quad b3 - 3a"2b = 26 \],

prove that $ a*2 + b2 = 13 $.

import Mathlib Ol &

Enter your mathematical statement in Lean 4:

theorem my_favorite_theorem {a b : R} (he : a"3 - 3%a*xb”2 = 39) (h1 : b3 -
3%a”2xb = 26) :
a2 + b*2 = 13 := by sorry

Q

demo.projectnumina.ai


http://demo.projectnumina.ai

Future Directions

e More than one approach successful for IMO-level mathematics:

= Pure natural language & formal successful - what's to come?
e Key challenge: Staying up to date with Lean/Mathlib updates

- How to provide reliable infrastructure for proof assistant users?
e New benchmarks and tasks needed?

- PutnamBench, RLMEval

- End-to-end development of mathematical theories



Thank You!




