
Isabelle/RL progress report:
reaping the first fruits of the project

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. The European Union cannot be held responsible for them.

Jonathan Julián Huerta y Munive
huertjon@cvut.cz
Czech Technical University in Prague
April, 2025

mailto:huertjon@cvut.cz

General Takeaway

Me: Come here as a user of interactive theorem provers (ITPs)

2

DeepIsaHOL Objective: create tools that serve the Machine
Learning (ML) and the ITP community for advancing the state
of the art in ML and ITP

⋮

Example

Accepted at
FomaliSE2025:

Let’s collaborate!

Summary of this talk

• The plan is to showcase contributions with lessons learned and views to the future:

1. Data extraction algorithm

2. Training and evaluation loops for flan-T5 and Gemma

3. Read-eval-print loops (REPL) for interacting with Isabelle

4. Depth-first search (DFS) evaluation algorithm

5. Small scale experiment comparing training set ups

6. Proof fixing tool for large developments

7. Tooling for calling an external next-step predictor from Isabelle

3

Approximate model of Isabelle

4

An Isabelle apply-style proof

5

User action: a command and its arguments

User states: the output the user sees in-between actions

An Isabelle Isar-style Proof

The communication process

Isabelle/ML

scala-isabelle

Python
Hugging Face

Unsloth Axolotl

Gymnasium

vllm tLLM

* plans to remove scala-isabelle in the future
7

Data Extraction Algorithm

8

AFP

Generated
Data

Data extraction process

Identifies each

proof in a .thy file

10

For each user action in the proof,

it writes corresponding data

Data extraction process

Content of the generated data

Contents:

- user action

- user state

- Isabelle state/term

- variables

- constants

- type constants
- type variables
- apply-keywords

- isar-keywords

- proof methods

- lemma dependencies

Easily extensible to include:

- classes

- locales

- definitions

- conjecturing

- Sledgehammer premises

How to use it?

12

Simple interface for data extraction either as a single command:

or via the Scala or Python REPL:

sbt "run /path/to/a/read/directory/ /path/to/a/writing/directory/"

Read-eval-print-loops (REPL)

13

How to use it?

Start a Py4j server running a scala-isabellle process with

 `sbt “runMain isabelle_rl.Py4j_Gateway_Main” `

14

Small-scale experiment

15

Experimental setup

• Use small language models to predict the next user action in Isabelle proofs

• Text-to-text transfer transformer (T5) language models (encoder-decoders)
requiring the SentencePiece tokenizer:

• small (77 million parameters)

• base (248 million parameters)

• To compare:

• training from scratch vs fine-tuning them (T5 models are pre-trained with

question-answering datasets on math word problems, coding problems for
popular programming languages, and various English-language novels)

• benefits of extra data: proof up to a given and user state (s) vs augmenting
to that the premises to prove the theorem and the keywords available at
that point (spk)

16

Experimental setup

17

for the fine-tuned T5 small modelAverage

2025 data

198,108 proofs (~66.93%)

922 AFP entries (99.57%)

1,555,653 training proof steps

AFP official numbers

~296,000 lemmas

926 AFP entries

2024 data

187,210 proofs (~63.24%)

861 AFP entries (92.98%)

1,854,901 training proof steps

64% of each .thy file is reserved for training, 16% for validation, and 20% for testing

Experimental setup

18

Average

2025 data

198,108 proofs (~66.93%)

922 AFP entries (99.57%)

1,555,653 training proof steps

AFP official numbers

~296,000 lemmas

926 AFP entries

2024 data

187,210 proofs (~63.24%)

861 AFP entries (92.98%)

1,854,901 training proof steps

64% of each .thy file is reserved for training, 16% for validation, and 80% for testing

for the fine-tuned T5 small model

Loss, accuracy, and other metrics (as LLMs)

19

Model performance metrics after 4 epochs over the training data set
(except for the spk which was only trained over 3 epochs)

3. Training of T5 LLMs for simple experiments

20

Model Predictions Progress by
commands Correct by Proofs Finished

proofs Avg. time

small_s 7,426,213 61.58 % 187,683 42.02 % 43,538 7.13 % 48.92 s

small_fs 3,508,777 37.79 % 162,986 8.40 % 42,408 11.28 % 40.09 s

small_spk 2,939,773 48.82 % 55,195 14.76 % 43,218 8.81 % 29.84 s

base_s 5,955,871 59.45 % 101,268 25.36 % 43,001 9.51 % 50.33 s

base_fspk 2,315,016 52.57 % 118,959 36.70 % 38,532 16.71 % 53.28 s

Let the models suggest the next user-action (5 opportunities) in a

depth-first search (DFS) fashion for at most 5 consecutive user actions

Extras on the small-scale experiment 3

21

t5_small (s) t5_small (fs)

t5_small (spk) t5_base (s)

Proof-fixing tool

22

General problem

• Prove the partial correctness of a protocol:

• The invariant is really a huge conjunction:

• Each (minor) edition in the formalisation, breaks downstream proof progress:

{ inv } formalisation { inv }

inv ≜ I1 ∧ I2 ∧ I3 ∧ ⋯ ∧ In

{I1} formalisation {I1}
<proof>

{In} formalisation {In}
<proof>

definition1

definition2

definitionm

⋮

formalisation ≡ f defs

lemma1 φ1

lemma2 φ2

lemmam1 φm1

⋮

<proof>

<proof>

⋮

<proof>
⋮

lemma1 φ1

lemma2 φ2

lemmamn φmn

⋮

<proof>

<proof>

<proof>
⋮

…

(minor) change here

(e.g. adding an invariant)

produces (trivial) errors there

(solved by calling Sledgehammer)

23

General solution

{I1} formalisation {I1}
<proof>

{In} formalisation {In}
<proof>

definition1

definition2

definitionm

⋮

formalisation ≡ f defs

lemma1 φ1

lemma2 φ2

lemmam1 φm1

⋮

<proof>

<proof>

⋮

<proof>
⋮

lemma1 φ1

lemma2 φ2

lemmamn φmn

⋮

<proof>

<proof>

<proof>
⋮

…

super_fix: traverses your .thy file, it fixes misaligned proof obligations and replaces
failed (or infinitely looping) proof methods with sorry’s. Then, it traverses the .thy file
again and calls Sledgehammer where each sorry appears. If Sledgehammer finds a
proof, it replaces the sorry with that proof. Otherwise, it leaves the sorry to the user.

this helped complete the large scale proof of a cache-coherence protocol!

24

Conclusion

25

Next steps

• Call an external tool via an Isabelle tactic

• Continue the small scale experiment

• Compare agains Sledgehammer

• Variation of the model architecture (from encoder-decoder to autoencoder)

• Usage of the latest optimised models (Gemma or DeepSeek-R1)

• Train on small-scale premise selection

• Train on “conjecturing” predicting the next state

• Variations on the proof-exploration tree (best-first search, MCTS)

• Complete the infrastructure for reinforcement learning experiments

• Focus on cleverly engineered premise selection to improve the models’ performance

26

Previous machine learning on proof assistants: Tactician

27

Previous ML approaches on ITPs

Prover\Strategy Premise
selection

Reinforcement
Learning

Next step
prediction for

proof completion
Autoformalisation

HOL4 TacticToe (kNN) Tactic Zero TacticToe (kNN)

Coq (now Rocq)
CoqPilot, Tactician

(kNN, GNN, and
LLM)

Isabelle Magnushammer Thor, DeepIsaHOL Draft-Sketch-Prove,
LEGO-Prover

Lean LeanDojo’s
ReProver Deep Seek Prover

HOL Light HOL-list (RL) HOL-list (GNN)

Final invitation

28

DeepIsaHOL is an open project intended to serve the machine
learning community and the ITP community.

Everyone is invited to collaborate, use it, and provide feedback

Jonathan Julián Huerta y Munive
huertjon@cvut.cz
Czech Technical University in Prague https://github.com/yonoteam/DeepIsaHOL

mailto:huertjon@cvut.cz

