
D.M. Cerna, Hypothesis Space Processing AITP-25

Hypothesis Space Processing for Efficient Rule
Learning Through Inductive Logic Programming

David M. Cerna

August 31st- September 5th 2024
AITP-25

slide 1/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Inductive Logic Programming (ILP)

▶ ILP? symbolic machine learning.

▶ Introduced in the early 90s (Muggleton, 1991).
▶ Goal: Form an explanatory hypothesis using:

1) Positive and negative evidence
2) Provided background knowledge

Background Knowledge (BK)

mother(a, b). father(g , b).

mother(a, c). father(g , c).

mother(b, d). father(f , d).

mother(e, f). father(c , h).

Evidence

grandparent(a, d)+.

grandparent(g , d)+.

grandparent(a, h)+.

grandparent(g , h)+.

grandparent(a, e)−.

▶ mother(a, b) denotes a is a mother of b.

slide 2/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Grandparent Example

▶ From mother/2 and father/2 we learn a logic program for

X is a grandparent of Y

▶ One solution is

grandparent(X ,Y):-mother(X ,Z), mother(Z ,Y)

grandparent(X ,Y):-mother(X ,Z), father(Z ,Y)

grandparent(X ,Y):-father(X ,Z), mother(Z ,Y)

grandparent(X ,Y):-father(X ,Z), father(Z ,Y)

▶ A popular learning paradigm is Learning from Entailment:

BK ,H |= E+ BK ,H ̸|= E−

▶ Goal: Find H.

slide 3/24

D.M. Cerna, Hypothesis Space Processing AITP-25

A “Better” Grandparent

BK

mom(a, b). dad(e, b).

mom(a, c). dad(e, c).

mom(b, d). dad(c , f).

E+

gp(a, d). gp(e, d).

gp(a, f). �����gp(e, f).

E−

gp(a, b). gp(b, c).

gp(c, f). gp(d , f).

Learning is less brittle with the parent predicate

gp(X ,Y):-mom(X ,C), mom(C ,Y)

gp(X ,Y):-mom(X ,C), dad(C ,Y)

gp(X ,Y):-dad(X ,C), mom(C ,Y)

�����gp(X ,Y):-�����dad(X ,C),�����dad(C ,Y)

gp(X ,Y):-p(X ,C),p(C ,Y)

p(X ,Y):-mom(X ,Y)

p(X ,Y):-dad(X ,Y)

▶ ISSUE: Searching through a larger hypothesis space.

slide 4/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Negation: Even Better Generalizaion

▶ Optimal Solution:

f (S) :- scene(S),not inv1(S).

inv1(S) :- cone(S ,P),not red(P).

▶ There does not exists a cone in the scene that is not red.

▶ Generalisation Through Negation and Predicate Invention
AAAI-24 (D. Cerna, A. Cropper)

slide 5/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Higher-order: Shorter and General Programs

▶ Higher-order definitions, larger space ⇒ smaller programs:

map(P, [], []).

map([H1|T1], [H2|T2],P):-P(H1,H2), map(T1,T2).

▶ First-order dropLast:

dropLast(A,B):- empty(A), empty(B).

dropLast(A,B):- con(A,B,C), reverse(C ,E),

tail(E ,F), reverse(F ,G),

con(B,G ,H), dropLast(D,H).

▶ Higher-order dropLast:

dropLast(A,B):- map(inv ,A,B).

inv(A,B):- reverse(A,C), tail(C ,D), reverse(D,B).

▶ Learning Higher-Order Logic Programs From Failures,
IJCAI-22 (S. Purgal, D. Cerna, C. Kaliszyk)

slide 6/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Classical Approaches to Learning from Entailment

▶ Top down: (Foil,TILDE) overly general guess and try to
specialize it.
▶ Assume the empty program and add literals.

▶ Bottom up: (Progol, Aleph) overly specific guess and try to
generalize it.
▶ Assume much of the BK and remove/generalize literals.

▶ Unsuccessfully learning: Predicate Invention, Recursion,
Higher-order definitions.

▶ Modern Approach: Meta-learning, i.e. encoding.
▶ Example meta-learners:

▶ MAXSYNTH (Hocquette et al., 2024), NOPI (Cerna and
Cropper, 2024), Joiner(Hocquette et al., 2024), Disco
(Cropper and Hocquette, 2023), Hopper (Purgal, Cerna, and
Kaliszyk, 2022), Popper (Cropper and Morel, 2021,2022),
Apperception Engine (Evans et al., 2021)

▶ δILP (Evans and Grefenstette, 2018), Metagol (Muggleton et
al., 2015), ILASP (Law et al., 2014)

slide 7/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Popper: Learning from Failures

▶ Counterexample-guided synthesis:

▶ Main Loop:

▶ Uses a Multishot ASP solver.
slide 8/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Popper with PI

▶ The main difference is a larger search space.

▶ Larger search space.

▶ Full of redundancy. Efficient search is needed.

slide 9/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Pointless rules

▶ Literals in the body of rules are may imply each other.

r1 : h(A) :- odd(A), int(A).

r2 : h(A) :- odd(A).

▶ Observe, odd(A)⇒ int(A) and int(A)⇒ odd(A).

▶ Thus, keeping r1 in the search space is pointless.

▶ Furthermore, “specializations” of r1 cannot be optimal.

▶ Scare quotes: propositional subsumption relation.

slide 10/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Reducible Rules

Definition (Captured literal)

Let r be a rule, l ∈ body(r), and
vars(l) ⊆ vars(body(r) \ {l}) ∪ vars(head(r)). Then l is
r -captured.

Definition (Reducible)

Let r be a rule, B be BK, l ∈ body(r) be r -captured, and
B |= r ↔ r \ {l}. Then r is reducible.

▶ The generator can prune “Specializations” of reducible rules.

▶ Can we relax the logical equivalence?

slide 11/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Pointless rules

▶ No implications present in the following rule:

r1 : h(A) :- odd(A), lt(A, 10).

r2 : h(A) :- odd(A).

E− = {h(1), h(2), h(3)}

▶ Observe, lt(A, 10) accepts all of E−, i.e. r1 and r2 accept the
same members of E−.

▶ Thus, keeping r1 in the search space is pointless.

▶ Furthermore, “specializations” of r1 cannot be optimal.

▶ Such rules are referred to as indiscriminate.

slide 12/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Indiscriminate Soundness

Definition (Indiscriminate)

Let r be a rule, B be BK, E− be negative examples with the same
predicate symbol as the head of r , l ∈ body(r) be r -captured, and
for all e ∈ E−, B |= (r → e)↔ (r \ {l} → e). Then r is
indiscriminate.

Proposition (Indiscriminate soundness)

Let B be BK, E− be negative examples, h1 be a hypothesis, r1 be
a basic rule in h1, h2 ⊆ h1, r2 ∈ h2, r2 ⊆ r1, and r2 be
indiscriminate with respect to B and E−. Then h1 is not optimal.

slide 13/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Improvements and code

+40

+20

0

-20

-40

-60

Task

L
ea
rn
in
g
ti
m
e
d
iff
er
en

ce
(m

in
u
te
s)

▶ Reducible and Indiscriminate rules are found during search.

▶ Datasets: 1D-arc, IMDB, Zendo, IGGP.

▶ Can we add preprocessing to the generator?

slide 14/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Preprocessing: Recall Reducible rules

▶ No implications present in the following rule:

BK = {edge(a, b), edge(b, c), edge(c, a)}
r1 : h :- edge(A,B), edge(B,C), edge(C ,D), edge(D,E).

r2 : h :- edge(A,B), edge(B,C), edge(C ,A).

θ = {D 7→ A,E 7→ B}

▶ Observe, that r1 ⪯θ r2 as r1θ = r2, |r1| > |r2|, and
B |= r1 → r2 follows from r1 ⪯θ r2.

▶ Furthermore, B |= r2 → r1 follows from edge/2 being a
bijective mapping from {a, b, c} to itself.

▶ That is “specializations” of r2 by adding an edge literal
cannot be optimal.

▶ Such rules are referred to as Recall Reducible.

slide 15/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Beyond Definite Clause Subsumption

Definition (Recall reducible)

Let B be BK, r1 be a rule, r1 ⪯θ r2, |r1| > |r2|, and B |= r1 ↔ r2.
Then r1 is recall reducible.

Proposition (Recall specialisation)

Let B be BK, r1 be recall reducible, and r1 ⊆ r2. Then r2 is recall
reducible.

Proof.
We show that recall reducibility is equivalent to recognizing
pigeonhole arguments in the definitions of the BK.

slide 16/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Comparision to Reducible/Indiscriminate

Re
du
cib
le

Recall reducible

r1r2 r3

Both

r1 : h :- leq(B,C), succ(A,B),

succ(A,C).

r2 : h :- nat(A), succ(A,B).

r3 : h :- succ(A,B), succ(A,C),

odd(B), prime(C).

r4 : h :- leq(B,B), succ(A,B).

r5 : h :- succ(A,B), succ(A,C).

r6 : h :- succ(A,B).

r7 : h :- succ(A,C), odd(C), prime(C).

slide 17/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Results Preprocessing: Reducible and Recall (10 seconds)

slide 18/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Symmetries Breaking for ILP

r1 = zendo(A) ← piece(A,B), size(B,C), blue(B), small(C)

r2 = zendo(A) ← piece(A,C), size(C,B), blue(C), small(B)

▶ r1 and r2 are variants.

▶ How to quickly (and efficiently) recognize this?

slide 19/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Precise Problem

Definition (Hypothesis space reduction problem)

Given an ILP input (E ,B,H), the hypothesis space reduction
problem is to find H′ ⊆ H such that if H contains an optimal
hypothesis then there exists an optimal hypothesis h ∈ H′.

▶ For example, removing body variants.

Definition (Body variant)

A rule r ′ is a body-variant of a rule r if there exists a bijective
renaming σ from body vars(r) to body vars(r ′) such that rσ = r ′.

Proposition (Body-variant hardness)

The body-variant problem is GI-hard.

▶ When can we solve the variant problem efficiently?

slide 20/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Ordering Variable Arguments

Definition (Witnessed)

Let r be a rule, v be a variable, l1 ∈ body(r) such that
v ∈ skipped(l1), and l2 ∈ body(r) such that v ∈ vars(l2) and
l2 <lex l1. Then we say that l1 is v-witnessed in r .

▶ In p(A,C ,E) the variables B and D are skipped.

▶ In r1, p(A,E) is not C-witnessed.

▶ In r2, p(B,D) is C-witnessed and p(C ,E) is E-witnessed.

r1 : h(A,B) :- p(A,E), p(B,C), p(C ,D).

r2 : h(A,B) :- p(A,C), p(B,D), p(C ,E).

Definition (Safe variable)

Let r be a rule and v ∈ body vars(r) such that for all l ∈ body(r),
where v ∈ skippedk(l), l is v -witnessed in r . Then v is safe.

slide 21/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Soundness modulo Variants

Proposition (Soundness)

For every rule r there exists a rule r ′ such that r ′ is a body-variant
of r and all variables in r ′ are safe.

Proof.
Proof by induction. Selecting the smallest unsafe variable x and
construct a substitution that, when applied to r , results in a rule
where the smallest unsafe variable is larger than x .

r1 : h(A,B) :- p(A,E), p(B,C), p(C,D).

σ1 = {E 7→ C ,C 7→ F}{F 7→ E ,E 7→ D}
r2 : h(A,B) :- p(A,C), p(B,E), p(E ,D).

σ2 = {E 7→ D,D 7→ F}{F 7→ E ,E 7→ D}
r3 : h(A,B) :- p(A,C), p(B,D), p(D,E).

slide 22/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Experiments

+20

0

-20

-40

-60

Task

L
ea
rn
in
g
ti
m
e
d
iff
er
en
ce

(m
in
u
te
s)

▶ (right) Tested on a single hard tasks from trains dataset.

slide 23/24

D.M. Cerna, Hypothesis Space Processing AITP-25

Future work

▶ Simple:
▶ put all this work together and find more optimizations.
▶ Apply to predicate invention.

▶ Papers can be found on ArXiv:
▶ Efficient Rule Induction by Ignoring Pointless Rules (A.

Cropper, D. M. Cerna)

▶ Honey, I Shrunk the Hypothesis Space (Through Logical
Preprocessing) (A. Cropper, F. Gouveia, D. M. Cerna)

▶ Symmetry Breaking for Inductive Logic Programming (A.
Cropper, D. M. Cerna, M. Järvisalo)

slide 24/24

