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Approach

We structure large proofs into manageable lemmas
driven by proof structures considered as compressed terms
lemma formulas then come second, determined by substructures of the compression
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Particular Theses

We structure large proofs into manageable lemmas
driven by proof structures considered as compressed terms
lemma formulas then come second, determined by substructures of the compression

I. Compression of proof structures is a suitable approach to lemma synthesis
• Quality of a lemma is indicated by its effects on proof structure

II. For lemma synthesis not only compression “from scratch” can be useful but also further compression
applied to already compressed structures
• E.g., to let machine suggest improvements of given human structurings

III. Structuring of mathematical knowledge by human experts, as with Metamath, is worth systematic
investigation for understanding human reasoning
• How far can human structurings be modeled by mechanical compression methods?

IV. A mathematical KB with proofs in an ATP format helps to advance ATP
• These proofs provide examples of the desired ATP results from which ATP may “learn”
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Metamath

By Norman Megill, started early 1990s; contributors includeDavid A. Wheeler, Mario Carneiro
“Formalizing 100 Theorems”: Isabelle 92; HOL Light 89; Coq79; Lean 79;Metamath 74; Mizar 69
Metamath Proof Explorer aka set.mm
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Topic 1st Thm

Propositional calculus 1Predicate calculus 1,744Zermelo-Fraenkel set theory 2,650The axiom of replacement 5,086The axiom of choice 9,916Tarski-Grothendieck set theory 10,157Real and complex numbers 10,304Elementary number theory 15,391Basic structures 16,243Basic category theory 16,695Basic order theory 17,238Basic algebraic structures 17,517Basic linear algebra 19,918Basic topology 20,936Basic real and complex analysis 23,316Basic real and complex functions 23,897Elementary geometry 25,398Graph theory 25,912
Guides, miscellanea, examples 27,236
Deprecated material 27,321
70 mathboxes 29,111
Last Thm 43,920

https://www.cs.ru.nl/%7Efreek/100/


Metamath

“Metavariable mathematics” – use of metavariables over an object logic

Simplest framework that allows essentially all of mathematics to be expressed with absolute rigor
• All statements treated as mere sequences of symbols, i.e., constant and variable tokens

( ph -> ( ps -> ph ) )
• Metamath just knows how to substitute strings of symbols for the variables, based oninstructions you provide it in a proof, subject to constraints you specify for the variables
No particular set of axioms, axioms are defined in a DB
Almost no hard-wired syntax; syntax also defined via substitution rules in the DB
• Parsing is done within proofs, based on declarations in the DB• It is easy to strip off the “syntactic” parts from proofs; tools by default do not show them
Specification and introduction: Metamath book (free PDF)[Megill, Wheeler: Metamath – A Computer Language for Mathematical Proofs, 2nd. ed, 2019]
No single canonical tool: many verifiers and proof assistants, with metamath.exe as a reference
• metamath.exe verifies set.mm (44,000 theorems) in 7.5 s, an optimized system in 0.2 s 7



The CD Tools Environment for Experimenting with Condensed Detachment . . .

Written in SWI-Prolog

Extends the PIE (Proving, Interpolating, Eliminating) environment [W, 2016; 2020]
• Provides interfaces to TPTP and many first-order provers
Includes structure-generating provers for CD and Horn problems: SGCD, CCS[W 2022; Rawson, W, Zombori, Bibel 2023; W 2024; W, Bibel 2024]
New: methods and support for grammar-based tree compression

New: Metamath interface, written from scratch in SWI-Prolog
• Also proofs are translated to Prolog terms, with various options

• With and withoutMetamath’s “syntactic” steps• Inference of “syntactic” steps that meet disjoint-variable restrictions• Compatible with other proof terms in CD Tools
• Prolog fact base generated from set.mm in 2 min; after compilation it loads in 0.5 s
So, now we assume we have read-in set.mm into our SWI-Prolog . . .
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The Logic Behind set.mm: First-Order Horn Logic with a Single Predicate “is_theorem”

A theorem statement in set.mm
${
notbid.1 $e |- ( ph -> ( ps <-> ch ) ) $.
$( Deduction negating both sides of a logical equivalence. (Contributed by
NM, 21-May-1994.) $)

notbid $p |- ( ph -> ( -. ps <-> -. ch ) ) $=
wph wps wn wch wn wph wps wch wps wn wn wch wn wn notbid.1 wps notnotb
wch notnotb 3bitr3g con4bid $.

$}

Converted representation as first-order definite clause
is_theorem(X=>wb(n(Y),n(Z))) <- is_theorem(X=>wb(Y,Z))

Wemay omit the “is_theorem” predicate
(X=>wb(n(Y),n(Z))) <- (X=>wb(Y,Z))

Pre-view: the proof as tree grammar production
notbid(V) -> con4bid(3bitr3g(V, notnotb, notnotb)) 10



Proof Terms: Primitives, Most General Theorem (MGT)

[Megill: A Finitely Axiomatized Formalization of Predicate Calculus with Equality, 1995]
There are two primitive proof term constructor functions:
Condensed detachment (modus ponens, modulo most general unification)

If A : is_theorem(X=>Y)
and B : is_theorem(X)
then d(A,B) : is_theorem(Y)

Condensed generalization
If A : is_theorem(X)
then g(A) : is_theorem(forall(Y, X))

For given axioms, a proof term proves its most general theorem (MGT), or its MGT is undefined
ax1 :: is_theorem(X=>(Y=>X)) Simp, K

d(ax1,ax1) : is_theorem(X=>(Y=>(Z=>Y)))
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Towards Compressing Proof Terms: A Proof Term

Given axiom
ax1 :: (X=>(Y=>X))

Proof term built from primitives d, g and axiom constants
d(ax1, : (X=>(Y=>(Z=>(U=>Z))))
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))
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DAG-Compressed Proof Terms

Given axiom
ax1 :: (X=>(Y=>X))

Proof term built from primitives d, g and axiom constants
d(ax1, : (X=>(Y=>(Z=>(U=>Z))))
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))

Compression to minimal DAG – factoring repeated subtrees
p1 -> d(ax1, ax1) : (X=>(Y=>(Z=>Y)))
start -> d(ax1, d(ax1, d(p1, p1))) : (X=>(Y=>(Z=>(U=>Z))))
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Grammar-Compressed Proof Terms

Given axiom
ax1 :: (X=>(Y=>X))

Proof term built from primitives d, g and axiom constants
d(ax1, : (X=>(Y=>(Z=>(U=>Z))))
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))

Compression to minimal DAG – factoring repeated subtrees
p1 -> d(ax1, ax1) : (X=>(Y=>(Z=>Y)))
start -> d(ax1, d(ax1, d(p1, p1))) : (X=>(Y=>(Z=>(U=>Z))))

Grammar compression – factoring repeated patterns
p1(V) -> d(ax1, V) : (Y=>X) <- X
p2 -> p1(ax1) : (X=>(Y=>(Z=>Y)))
start -> p1(p1(d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z))))
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The MGT of a Proof Term with Parameters

Given axiom
ax1 :: (X=>(Y=>X))

Proof term built from primitives d, g and axiom constants
d(ax1, : (X=>(Y=>(Z=>(U=>Z))))
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))

Compression to minimal DAG – factoring repeated subtrees
p1 -> d(ax1, ax1) : (X=>(Y=>(Z=>Y)))
start -> d(ax1, d(ax1, d(p1, p1))) : (X=>(Y=>(Z=>(U=>Z))))

Grammar compression – factoring repeated patterns
p1(V) -> d(ax1, V) : (Y=>X) <- X
p2 -> p1(ax1) : (X=>(Y=>(Z=>Y)))
start -> p1(p1(d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z))))

MGT of proof term with parameters: a definite clause with a body atom for each parameter

15



The Grammar-MGT of a LHS of a Proof Grammar

Given axiom
ax1 :: (X=>(Y=>X))

Proof term built from primitives d, g and axiom constants
d(ax1, : (X=>(Y=>(Z=>(U=>Z))))
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))

Compression to minimal DAG – factoring repeated subtrees
p1 -> d(ax1, ax1) : (X=>(Y=>(Z=>Y)))
start -> d(ax1, d(ax1, d(p1, p1))) : (X=>(Y=>(Z=>(U=>Z))))

Grammar compression – factoring repeated patterns
p1(V) -> d(ax1, V) : (Y=>X) <- X
p2 -> p1(ax1) : (X=>(Y=>(Z=>Y)))
start -> p1(p1(d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z))))

MGT of proof term with parameters: a definite clause with a body atom for each parameter
Grammar-MGT – MGT computation on compressed structure 16



Excerpt of an Actual Proof from set.mm

a1i(V) -> d(ax1, V) : (Y=>X) <- X
a2i(V) -> d(ax2, V) : ((X=>Y)=>(X=>Z)) <- (X=>(Y=>Z))
con4 -> ax3 : (n(X)=>n(Y))=>(Y=>X)
mp2(V1, V2, V3) -> d(d(V3, V1), V2) : Z <- X, Y, (X=>(Y=>Z))
con4i(V) -> d(con4, V) : (Y=>X) <- (n(X)=>n(Y))

⋮

bitrid(V1, V2) -> bitrd(a1i(V1), V2) : (Z=>wb(X,U)) <- wb(X,Y), (Z=>wb(Y,U))
bitr3id(V1, V2) -> bitrid(bicomi(V1), V2) : (Z=>wb(Y,U)) <- wb(X,Y), (Z=>wb(X,U))
3bitr3g(V1, V2, V3) -> bitrdi(bitr3id(V2, V1), V3)

: (X=>wb(U,W)) <- (X=>wb(Y,Z)), wb(Y,U), wb(Z,W)
notbid(V) -> con4bid(3bitr3g(V, notnotb, notnotb))

: (X=>wb(n(Y), n(Z))) <- (X=>wb(Y,Z))

Dimensions

Number of productions: 103
∣G∣, grammar size, total number of edges of RHSs: 274Size of expansion built from d and ax1-3: 398,932Size of minimal DAG: 550 17
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User-Specified MGT Instantiations inMetamath

Proof grammar MGT User-specified instance

p1(V) -> d(ax1, V) : (Y=>X) <- X (Y=>X) <- X
p2 -> p1(ax1) : (X=>(Y=>(Z=>Y))) (X=>(Y=>(X=>Y)))
start -> p1(p1(d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z)))) (X=>(Y=>(Z=>((U=>(W=>(U=>W)))=>Z))))
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A Subtlety Concerning the MGT of Non-Linear Proof Terms

A linear proof term and its MGT
d(V1, d(V2, ax1)) : Y <- (X=>Y), ((Z=>(U=>Z))=>X)

A similar but non-linear proof term and its MGT
d(V, d(V, ax1)) : (X=>(Y=>X)) <- ((X=>(Y=>X))=>(X=>(Y=>X)))

MGT requirements induced for all occurrences of a parameter are unified
For non-linear proof terms two ways to determine the MGT of d[V ↦ d

′] diverge
1. MGT after performing the substitution: mgt(d[V ↦ d

′])
2. MGT determined from MGT of mgt(d[V ]) and MGT of d′:

Aσ, where mgt(d[V ]) = A ← B, and σ = mgu(B,mgt(d′))

Aσ is a (possibly strict) instance of mgt(d[V ↦ d
′])

20



Features of our “Proof Theory” – A Generalization of Condensed Detachment

The “proves” relation between proof terms and formulas is specified with an inference system
d ∶∶ y ← (x ⇒ y) ∧ x

ax1 ∶∶ (x ⇒ (y ⇒ x))
APP

ax1 ∶ (x′
⇒ (y′ ⇒ x

′))
ax1 ∶∶ (x ⇒ (y ⇒ x))

APP
ax1 ∶ (x′′

⇒ (y′′ ⇒ x
′′))

APP
d(ax1, ax1) ∶ (y′ ⇒ (x′′

⇒ (y′′ ⇒ x
′′)))

Reified proof terms (not just implicitly formed graphs)
“Efficiency” not addressed in the spec: proof search is building proof terms, in whatever ways
MGT: the unique most general formula proven by a proof term
• Determined via unification• A definite clause, body atoms corresponding to parameters in the proof term• For a nonlinear proof terms, formulas for all occurrences of a parameter are unified
Proof grammar: compressed representation of a proof tree or a set of proof trees
• Proofs of lemmas correspond to grammar productions• Grammar-MGTs determine the MGTs efficiently directly on the grammar compression

Theorems can be user-specified strict instances of their proof’s MGT
21



Combinator Term DAGs as an Alternative to Grammars

Given proof term

d(d(ax1, ax1),
d(d(d(ax1, ax1),

ax1),
ax1))

Grammar compression

p1(V) -> d(V, ax1)
p2 -> p1(ax1)
start -> d(p2, p1(p1(p2)))

Combinator DAG in D-term syntax

F1 = d(d(C, I), ax1)
F2 = d(F1, ax1)
F3 = d(F2, d(F1, d(F1, F2)))

Combinator DAG

f1 = CIa1
f2 = f1a1
f3 = f2(f1(f1f2))

Involved combinators

C = λxyz.xzy
I = λx.x
CI = λxy.yx

Combinator term

CIa1a1(CIa1(CIa1(CIa1a1)))

22
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The Save-Value of a Production

save-valueG(Production) ∶= ∣G after eliminating Production∣ − ∣G∣
Indicates a production’s contribution to the compression [Lohrey et al., 2013]Can be positive, zero, or negative
Let G = p1(V) -> d(ax1, V) : (Y=>X) <- X

p2 -> p1(ax1) : (X=>(Y=>(Z=>Y)))
start -> p1(p1(d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z))))

After eliminating (unfolding and removing) p1 we obtain
p2 -> d(ax1, ax1) : (X=>(Y=>(Z=>Y)))

start -> d(ax1, d(ax1, d(p2, p2))) : (X=>(Y=>(Z=>(U=>Z))))

We have ∣G∣ = 2 + 1 + 4 = 7
∣G after eliminating p1∣ = 2 + 6 = 8
save-valueG(p1) = 8 − 7 = 1

24



TreeRePair – A Grammar-Based Tree Compression Algorithm

[Lohrey, Maneth, Mennicke: XML Tree Structure Compression using RePair, 2013]
Phase 1: Replacement

Input: A term (may be represented as DAG)
Loop: Find a repeated pattern f (_, g(_), _)Generate a production h(_) -> f (_, g(_), _)In the term, fold into the production

d(ax1,
d(ax1,
d(d(ax1, ax1),
d(ax1, ax1))))

Generated: p1(V) -> d(ax1, V)

p1(p1(d(p1(ax1),
p1(ax1))))

Generated: p2 -> p1(ax1)

p1(p1(d(p2,
p2)))

Output: A grammar: the generated productions and a start production to the final main term
Phase 2: Pruning

Eliminate productions with save-value ≤ 0

All stages are sensitive to configuration and heuristics
25

Output of replacement
p1(V) -> d(ax1, V)
p2 -> p1(ax1)
start -> p1(p1(d(p2, p2)))



Proof Compression Workflow

Processing stage Kind Source ∣G∣ #Prod (G)
Initial set of trees 5×1022 17Initial set of trees as DAG 21,472 9271. TreeRePair replacement phase Structural [Lohrey et al., 2013] 9,739 4,1532. TreeRePair pruning phase Structural [Lohrey et al., 2013] 3,683 9053. Nonlinear compression Structural 3,204 6044. Same-value reduction Structural 3,174 5935. MGT-based reduction Formula-related 3,017 534

Nonlinear compression: introduce nonlinear productions for RHS occurrences of a nonterminalwith repeated arguments
Same-value reduction: eliminate multiple nonterminals with the same expansion
MGT-based reduction: eliminate productions for which the grammar-MGT is subsumed by that ofanother production
Subtleties• Consideration of parameters modulo permutation• Configuration such that specified top-level theorems still have productions 26
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Experiments

Comparing human and machine compression – for 17 selected theorems (MINISET)
▸ Human compression (∣G∣ = 2,302) still better than machine compression (∣G∣ = 3,017) – why?
▸ 29% of MGTs in machine compression are also in the human compression; even 34% in set.mm– many of the synthesized lemmas seem useful

Compressing a given human grammar further
▸ Reduces ∣G∣ of MINISET from 2,302 to 1,831
▸ Works for large subsets of set.mm (mathematical topics); grammar-size reduction 4%–30%
▸ Result lemmas often look nice
Core part of set.mm as grammar
▸ 28% of the productions are nonlinear
▸ 8.4% of the theorems are a strict instance of the MGT
▸ 10% of productions have save-value 0; 12% < 0 – purposes of these redundancies?
▸ 3.1% are duplicate theorems; 3.9% subsumed – purposes of these redundancies?
The dependency graph as complex network: edges p → q for each occurrence of q in the RHS for p
▸ Found to be scale-free, for both human and machine compression

28



Some Potential Application Contexts and Related Work

Grammar-based proof compression for lemma synthesis[Vyskocil, Stanovský, Urban: Automated Proof Compression by Invention of New Definitions, 2010][Hetzl: Applying Tree Languages in Proof Theory, 2012]
▸ Compression applied there to formulas – here to proof terms

Structuring ATP proofs [Schulz: Analyse und Transformation von Gleichheitsbeweisen, 1993]
Structure-based criteria; special cases of standard grammar measures like save-value
Isolated proof segments: important for given proof if used often within it but rarely from outside

Premise selection [Kaliszyk, Urban: Learning-Assisted Theorem Proving with Millions of Lemmas, 2015]
Relevant are not only named theorems, but also lemmas used implicitly in proofsSuch lemmas can be taken into account at different levels: kernel/tactics

▸ Here: same language for all levels; levels formally related by lossless compression

Hammering [Carneiro, Brown, Urban: Automated Theorem Proving for Metamath, 2023]
▸ We obtain same FO-formulas; no tree expansion of proofs; inference of “syntactic” proof parts

29
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Conclusion – Looking Back at the Specific Main Theses

We structure large proofs into manageable lemmas
driven by proof structures considered as compressed terms
lemma formulas then come second, determined by substructures of the compression

I. Compression of proof structures is a suitable approach to lemma synthesis
▸ We introduced grammar compression of proof terms, productions representing lemma proofs
▸ First experiments give apparently useful lemmas

II. For lemma synthesis not only compression “from scratch” can be useful but also further compression
applied to already compressed structures
▸ First experiments show some scalability and give apparently useful lemmas

III. Structuring of mathematical knowledge by human experts, as with Metamath, is worth systematic
investigation for understanding human reasoning
▸ Grammar translation of set.mm and machine compressions allow precise comparisons

IV. A mathematical KB with proofs in an ATP format helps to advance ATP
▸ Grammar translation of set.mm proofs should provide a suitable form 31
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