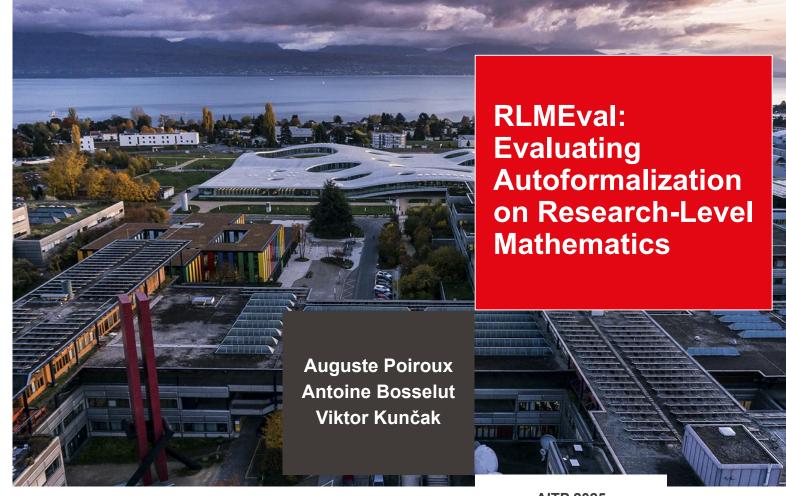
EPFL



Recent results

IMO 2024:

DeepMind¹: 4/6 (formal)

IMO 2025:

- DeepMind² & OpenAl³: 5/6 (natural language)
- Harmonic⁴: 5/6 (formal)
- ByteDance⁵: 4+1/6 (formal)

¹https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

²https://deepmind.google/discover/blog/advanced-version-of-gemini-with-deep-think-officially-achieves-gold-medal-standard-at-the-international-mathematical-olympiad/ ³https://github.com/aw31/openai-imo-2025-proofs/

⁴https://harmonic.fun/news

⁵Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving, ByteDance

High-School - MiniF2F

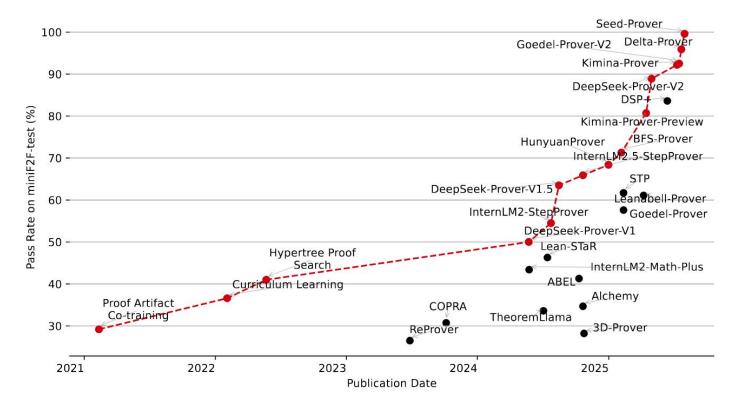
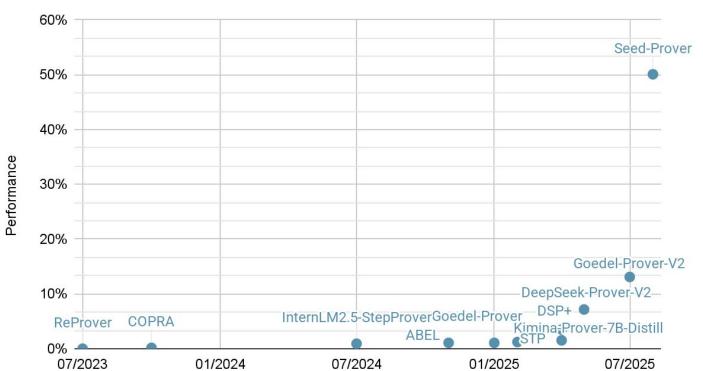


Figure 1 Growth in MiniF2F-Test performance over time.

Undergraduate - PutnamBench

Growth in PutnamBench performance over time



Practical usage

SOTA models are not easily accessible

- Some of them are private: AlphaProof, SeedProver, ...
- The others require, at least, high-end consumer GPUs
- SOTA results require tons of compute

Models struggle on real-world formalization problems

How do we measure and optimize for real-world use cases?

Benchmark

Existing benchmarks:

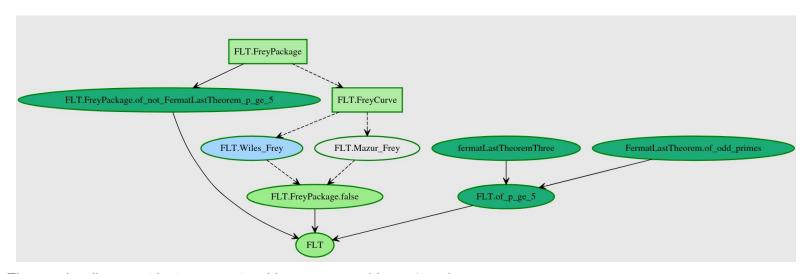
- High-School and Undergraduate levels
- Standalone theorems & competition problems
 - i.e. no local dependencies
- Focused on theorem proving. What about autoformalization?

Challenges when curating benchmarks:

- Requires domain expertise
- Historically, formalization mistakes are frequent in AI benchmarks
 - ex: in ProofNet, >30% of the formal statements are invalid¹

Can we leverage existing formalization projects?

Lean Blueprint



Fine-grain alignment between natural language and Lean4 code

Used for formalizing research results:

- Polynomial Freiman-Ruzsa Conjecture, Tao et al. https://teorth.github.io/pfr/
- Carleson's theorem, van Doorn et al. https://florisvandoorn.com/carleson/
- Sphere Packing, Viazovska et al. https://thefundamentaltheor3m.github.io/Sphere-Packing-Lean/
- Medium Prime Number Theorem, Kontorovich et al.
 https://alexkontorovich.github.io/PrimeNumberTheoremAnd/web/

RLMEval: a framework to transform blueprint projects into benchmarks

RLM25: an instance of RLMEval on 6 formalization projects

Total of 619 (natural-language, lean4) aligned theorems

Project	Domain	#Thms		
Carleson	Analysis	110		
FLT	Number Theory	52		
PFR	Combinatorics	144		
PNT	Analytic Number Theory	99		
FLT3	Number Theory	84		
TLB	Information & Probability Theory	124		

PFR sample - Example of a relatively uninformative informal proof without broader context

Name: cond-trial-ent

File: PFR/ForMathlib/Entropy/Basic.lean

Theorem. If 'X, Y' are conditionally independent over 'Z', then 'H[X, Y, Z] = H[X, Z] + H[Y, Z] - H[Z]'.

Formal statement:

```
lemma ent_of_cond_indep (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : CondIndepFun X Y Z \mu) [IsZeroOrProbabilityMeasure \mu] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[\langle X, \langle Y, Z \rangle \rangle ; \mu] = H[\langle X, Z \rangle; \mu] + H[\langle Y, Z \rangle; \mu] - H[Z; \mu]
```

Informal proof:

Immediate from conditional-vanish and conditional-mutual-alt.

Formal proof:

Carleson sample - Typical difficult entry of RLMEval

Name: tile-sum-operator

File: Carleson/FinitaryCarleson.lean

Theorem. We have for all $x \in G \setminus G'$

$$\sum_{\mathbf{p} \in \mathfrak{P}} T_{\mathbf{p}} f(x) = \sum_{s=\sigma_1(x)}^{\sigma_2(x)} \int K_s(x, y) f(y) e(Q(x)(y) - Q(x)(x)) d\mu(y). \tag{1}$$

Formal statement:

```
theorem tile_sum_operator (G' : Set X) (f : X \rightarrow \mathbb{C}) (x : X) (fx : x \in G \setminus G') : \Sigma (p. P X), carlesonOn p f x = \Sigma s in Icc (\sigma_1 \times) (\sigma_2 \times), \int y, Ks s x y * f y * exp (I * (Q x y - Q x x))
```

Informal proof:

Fix $x \in G \setminus G'$. Sorting the tiles $\mathfrak p$ on the left-hand-side of (1) by the value $s(\mathfrak p) \in [-S,S]$, it suffices to prove for every $-S \le s \le S$ that

$$\sum \mathfrak{p} \in \mathfrak{P} : s(\mathfrak{p}) = sT\mathfrak{p}f(x) = 0 \tag{2}$$

if $s \notin [\sigma_1(x), \sigma_2(x)]$ and

$$\sum \mathfrak{p} \in \mathfrak{P} : \mathfrak{s}(\mathfrak{p}) = sT\mathfrak{p}f(x) = \int Ks(x,y)f(y)e(Q(x)(y) - Q(x)(x)), d\mu(y). \tag{3}$$

if $s\in [\sigma_1(x),\sigma_2(x)]$. If $s\not\in [\sigma_1(x),\sigma_2(x)]$, then by definition of $E(\mathfrak{p})$ we have $x\not\in E(\mathfrak{p})$ for any \mathfrak{p} with $s(\mathfrak{p})=s$ and thus $T\mathfrak{p}f(x)=0$. This proves (2). Now assume $s\in [\sigma_1(x),\sigma_2(x)]$. By coverdyadic, subsetmaxcube, eq-vol-sp-cube, the fact that $c(I_0)=o$ and $G\in B(o,\frac14D^S)$, there is at least one $I\in \mathcal{D}$ with s(I)=s and $x\in I$. By dyadic-property, this I is unique. By eq-dis-freq-cover, there is precisely one $\mathfrak{p}\in \mathfrak{P}(I)$ such that $Q(x)\in \Omega(\mathfrak{p})$. Hence there is precisely one $\mathfrak{p}\in \mathfrak{P}$ with $s(\mathfrak{p})=s$ such that $x\in E(\mathfrak{p})$. For this \mathfrak{p} , the value $T\mathfrak{p}(x)$ by its definition in definetp equals the right-hand side of (3). This proves the lemma.

Formal proof:

rw [P_biUnion, Finset.sum_biUnion]; swap

```
- exact fun s _ s' _ hss' A hAs hAs' p pA → False.elim <| hss' (s_eq (hAs pA) > s_eq (hAs' pA
rw [\leftarrow (Icc (-S : \mathbb{Z}) S).toFinset.sum_filter_add_sum_filter_not (fun s \mapsto s \in Icc (\sigma_1 x) (\sigma_2 x
rw [Finset.sum_eq_zero_sum_eq_zero_of_nmem_Icc, add_zero]
refine Finset.sum_congr (Finset.ext fun s \mapsto (fun hs \mapsto ?_, fun hs \mapsto ?_)) (fun s hs \mapsto ?_)
- rw [Finset.mem_filter, ← mem_toFinset] at hs
exact hs.2
· rw [mem toFinset] at hs
rw [toFinset_Icc, Finset.mem_filter]
exact (Finset.mem_Icc.2 (Icc_o_subset_Icc_S hs), hs)
rcases exists_Grid hx.1 hs with (I, Is, xI)
obtain (p, IpI, Qp) : \exists (p : PX), Ip = I \land Qx \in \Omegap := by simpa using biUnion_\Omega(x, rfl)
have pPXs : p ∈ PX_s s := by simpa [s, IpI]
have : \forall p' \in PX_s s, p' \neq p \rightarrow carlesonOn p' f x = 0 := by
  intro p' p'PXs p'p
  apply indicator_of_not_mem
  simp only [E, mem_setOf_eq, not_and]
  refine fun x_in_Pp' Op' → False.elim ?_
  have s_eq := s_eq pPXs > s_eq p'PXs
  have : ¬ Disjoint (I p' : Set X) (I p : Set X) := not_disjoint_iff.2 (x, x_in_Ip', IpI > xI)
  exact disjoint_left.1 (disjoint_Ω p'p <| Or.resolve_right (eq_or_disjoint s_eq) this) Qp'
rw [Finset.sum_eq_single_of_mem p pPXs this]
have xEp : x ∈ E p :=
  (IpI > xI, Qp, by simpa only [toFinset_Icc, Finset.mem_Icc, s_eq pPXs] using hs)
simp_rw [carlesonOn_def', indicator_of_mem xEp, s_eq pPXs]
```


RLMEval - Evaluation tasks

Automated/Neural Theorem Proving

- <u>Input</u>: theorem to prove (+ local context)
- Output: formal proof

Proof Autoformalization

- <u>Input</u>: theorem to prove + informal proof (+ local context)
- Output: formal proof

Statement Autoformalization

- Input: informal theorem to formalize (+ local context)
- Output: formal theorem

RLMEval - Evaluation tasks

Project	% Auxiliary lemmas	Main theorems Proof Length	Auxiliary lemmas Proof Length			
PFR	75.3%	23.2	9.0			
FLT	72.2%	12.8	4.0			
FLT3	15.9%	8.8	4.9			
Carleson	85.9%	27.0	7.8			
PNT	78.3%	16.7	8.3			
TLB	83.0%	11.2	5.7			
Avg	68.3%	16.6	6.6			

Auxiliary lemma = Lean lemma not appearing in the *informal* blueprint

ATP/NTP + Proof autoformalization tasks:

- Easy mode: auxiliary lemmas are available in the context
- Normal mode: auxiliary lemmas are hidden from the evaluated model

EPFL

RLM25 - Results

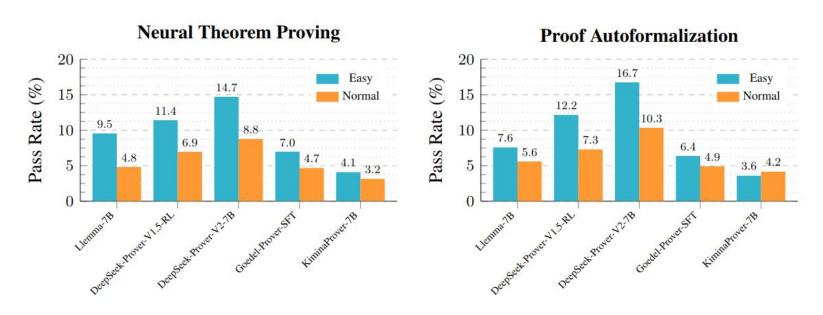
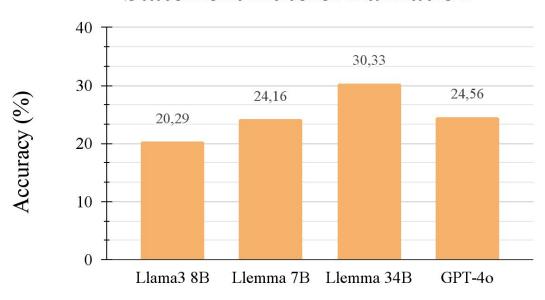


Figure 1: Pass rate on RLMEval using pass@128 for neural theorem proving (left) and proof autoformalization (right), in Easy and Normal modes.

EPFL

RLM25 - Results

Statement Autoformalization

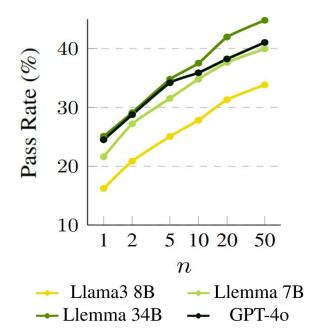


Accuracy on RLM25 using in-file content prompting and n=50 samples + Self-BLEU for each informal theorem to formalize

EPFL S

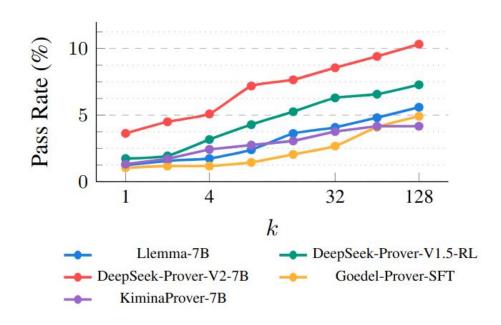
Scaling

Statement Autoformalization



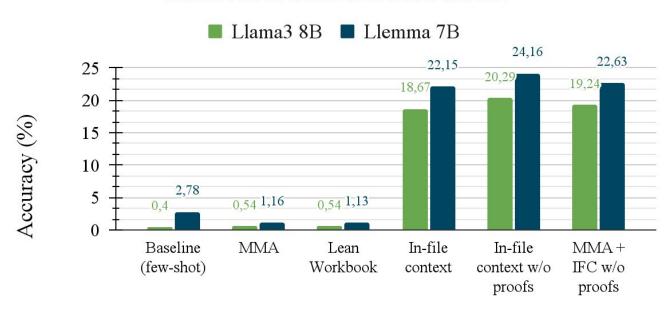
Proof Autoformalization

Normal mode



RLM25 - Case Study

Statement Autoformalization



Prompting / training method

Next steps

RLMEval only captures a small part of real-world formalization tasks

Non-exhaustive list of capabilities to evaluate in the future:

- Deriving the informal blueprint from a paper
- Refining and adapting the blueprint/formalization during the formalization process
- Refactoring Lean code to make components reusable / integrated to Mathlib
- Definition formalization
- . . .

LeanInteract

Lean4↔Python interface

- Support Lean v4.7.0-rc1 to v4.23.0-rc2 (>50 versions)
- Spin up ephemeral Lean projects
- >10k downloads on PyPI

Backend:

- Lean REPL¹ fork
- Latest features & bug fixes semi-automatically backported

Coming soon: improved data extraction, incremental (Lean >= v4.8.0) & parallel elaboration (Lean >= v4.19.0)

Conclusion

RLMEval:

- Measure performance on real-world projects
- Current training methods have limited success
 - → project-wide context awareness is necessary

Papers:

- Reliable Evaluation and Benchmarks for Statement Autoformalization, Poiroux et al., EMNLP 2025
- RLMEval: Evaluating Research-Level Neural Theorem Proving, Poiroux et al., EMNLP 2025 -Findings

LeanInteract

Table 4: Detailed pass@k rates (%) for Proof Autoformalization on RLMEval projects. Normal mode uses on blueprint lemmas, Easy mode uses all project lemmas. Projects are: PFR, FLT3 (Fermat's Last Theorem for n=: Carleson (Carl.), FLT (Fermat's Last Theorem), TLB (testing-lower-bounds), PNT (Prime Number Theorem And

Model	Mode	p@k	PFR	FLT3	Carl.	FLT	TLB	PNT	Total
	Normal	p@1	0.69	3.57	0.00	0.00	3.23	0.00	1.25
		p@32	0.69	9.52	0.91	3.85	6.45	3.03	4.08
Llemma 7B		p@128	0.69	14.29	0.91	5.77	8.87	3.03	5.59
	Easy	p@1	0.00	2.38	0.00	1.92	4.03	1.01	1.56
		p@32	0.69	9.52	0.91	9.62	6.45	3.03	5.04
		p@128	1.39	13.10	0.91	15.38	9.68	5.05	7.58
	Normal	p@1	0.00	2.38	0.91	1.92	3.23	2.02	1.74
		p@32	1.39	19.05	0.91	9.62	4.84	2.02	6.30
DeepSeek-Prover-V1.5-RL		p@128	2.08	22.62	0.91	9.62	6.45	2.02	7.28
200000000000000000000000000000000000000	Easy	p@1	0.69	5.95	0.00	0.00	1.61	2.02	1.71
		p@32	0.69	16.67	0.91	19.23	12.90	8.08	9.75
		p@128	3.47	23.81	0.91	21.15	14.52	9.09	12.16
	Normal	p@1	0.69	11.90	0.00	5.77	2.42	1.01	3.63
		p@32	2.08	25.00	1.82	11.54	8.87	2.02	8.56
DeepSeek-Prover-V2-7B		p@128	2.08	32.14	2.73	11.54	10.48	3.03	10.33
	Easy	p@1	0.69	7.14	0.91	9.62	4.84	3.03	4.37
		p@32	3.47	27.38	1.82	23.08	19.35	10.10	14.20
		p@128	4.86	32.14	3.64	23.08	22.58	14.14	16.74
	Normal	p@1	0.00	3.57	0.00	1.92	0.81	0.00	1.05
		p@32	0.69	8.33	0.00	3.85	3.23	0.00	2.68
Goedel-Prover-SFT		p@128	0.69	13.10	0.00	9.62	4.03	2.02	4.91
	Easy	p@1	0.00	1.19	0.00	0.00	0.81	0.00	0.33
		p@32	0.00	8.33	0.00	13.46	4.84	2.02	4.78
		p@128	0.69	10.71	0.00	17.31	6.45	3.03	6.37
	Normal	p@1	0.00	3.57	0.00	1.92	2.42	0.00	1.32
		p@32	0.00	10.71	0.00	7.69	3.23	1.01	3.77
KiminaProver-7B		p@128	0.00	13.10	0.00	7.69	3.23	1.01	4.17
		p@1	0.00	3.57	0.00	1.92	0.00	0.00	0.92
	Easy	p@32	0.00	7.14	0.00	5.77	2.42	3.03	3.06
		p@128	0.00	9.52	0.00	5.77	3.23	3.03	3.59