

Natural-Language Proofs with Higher-Order Logic

Adam Dingle

Charles University, Prague

September 4, 2025

Adam Dingle Natural-Language Proofs 1 / 30

Natty: a natural-language proof assistant

- I described Natty at AITP last year
- today: an update on Natty's capabilities, challenges ahead

Can automatic provers follow steps in real-world proofs?

- Take a proof written in natural language
- Convert each step to a logical formula
- Use an automatic prover to verify each formula
- Is this possible in general?
 - If so, life is good!
 - If not, why not?

Can automatic provers follow steps in real-world proofs?

- Take a proof [in what domain?] written in [controlled?] natural language
- Convert each step to a logical formula [in what logic?]
- Use an automatic prover to verify each formula
- Is this possible in general? [how quickly? how reliably?]
 - If so, life is good!
 - If not, why not?

Can automatic provers follow steps in real-world proofs?

- Take an undergraduate textbook proof in lightly controlled natural language
- Convert each step to a formula in first-order or higher-order logic
- Use an automatic prover to verify each formula in < 30s (ideally < 5s), 100% of the time
- Is this possible in general?
 - Hopefully yes, but verification is not as easy as you might think
 - ...especially if there are many known theorems

Natty: a natural-language proof assistant

- Input: math in controlled natural language, as natural as possible
- Natty converts proof steps to formulas of higher-order logic
- ...and proves them using internal superposition-based prover
- Can export each proof step to a THF file for comparison with other provers
- Broadly, goals are similar to Naproche

Proof assistants: a spectrum of naturalness

```
$( Prove a theorem $)
    th1 $p |- t = t $=
$( Here is its proof: $)
    tt tze tpl tt weq tt tt weq tt a2 tt tze tpl
    tt weq tt tze tpl tt weq tt tt weq wim tt a2
    tt tze tpl tt t a1 mp mp
$.
```

Proof assistants: a spectrum of naturalness

```
definition
  let n be Nat;
  func cseq n -> Real_Sequence means :Def3: :: IRRAT_1:def 3
  for k being Nat holds it . k = (n choose k) * (n ^ (- k));
  correctness
  proof end;
end;
```

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar Naproche
Natty

✓ Less natural More natural →

Let us show that there exists a natural number a and nonzero natural number b such that $q = \frac{a}{b}$. Take an integer a and a nonzero integer b such that $q = \frac{a}{b}$.

Case a = 0 or a, b are natural numbers. Trivial.

Case (a < 0 and b > 0) or (a > 0 and b < 0). Then $\frac{a}{b} < 0$ and $q \ge 0$. Contradiction. End.

Case a < 0 and b < 0. Then $-a, -b \in \mathbb{N}$ and $q = \frac{-a}{-b}$. End. End. Take a natural number a and a nontrivial natural number b such that $q = \frac{a}{b}$.

Sample input 1: definition of $\mathbb N$

Natural numbers: definition

Axiom 1. There exists a type $\mathbb N$ with an element $0 \in \mathbb N$ and a function $s : \mathbb N \to \mathbb N$ such that

- a. There is no $n \in \mathbb{N}$ such that s(n) = 0.
- b. For all $n, m \in \mathbb{N}$, if s(n) = s(m) then n = m.
- c. Let $P : \mathbb{N} \to \mathbb{B}$. If $0 \in P$, and $k \in P$ implies $s(k) \in P$ for all $k \in \mathbb{N}$, then $P = \mathbb{N}$.

Definition. Let $1 : \mathbb{N} = s(0)$.

Lemma 1. Let $a \in \mathbb{N}$. Suppose that $a \neq 0$. Then there is some $b \in \mathbb{N}$ such that a = s(b).

Sample input 2: proof of right cancellation

Right cancellation of multiplication

Theorem 5. Let a, b, $c \in \mathbb{N}$. If $c \neq 0$ and ac = bc then a = b.

Proof. Let

 $G = \{ x \in \mathbb{N} \mid \text{for all } y, z \in \mathbb{N}, \text{ if } z \neq 0 \text{ and } xz = yz \text{ then } x = y \}.$

Let b, $c \in \mathbb{N}$ with $c \neq 0$ and $0 \cdot c = bc$. Then bc = 0. Since $c \neq 0$, we must have b = 0 by Theorem 4.1. So 0 = b, and hence $0 \in G$.

Now let $a \in \mathbb{N}$, and suppose that $a \in G$. Let $b, c \in \mathbb{N}$, and suppose that $c \neq 0$ and $s(a) \cdot c = bc$. Then by Theorem 3.5 we deduce that ca + c = bc. If b = 0, then either s(a) = 0 or c = 0, which is a contradiction. Hence $b \neq 0$. By Lemma 1 there is some $p \in \mathbb{N}$ such that b = s(p). Therefore $ca + c = s(p) \cdot c$, and we see that ca + c = cp + c. It follows by Theorem 2.1 that ca = cp, so ac = pc. By hypothesis it follows that a = p. Therefore s(a) = s(p) = b. Hence $s(a) \in G$, and we deduce that $G = \mathbb{N}$.

Controlled natural language input

- plain text with Unicode characters
- axioms, definitions, theorems with or without proofs
- rich set of synonyms for typical mathematical texts
- implicit multiplication, disambiguated using type information
- set comprehension notation
- Every type (e.g. \mathbb{N}) is also the universal set of that type (i.e. $\lambda x. \top$)
- Proof steps can say which theorem(s) to use ("By Theorem 3.5...")
 - ...though Natty currently ignores these annotations

Proof structure inference

- In natural-language proofs, block structure is often implicit
- Natty's parser outputs a linear series of proof steps
- Natty uses heuristics to arrange these steps into a tree, indicating where assumptions will be discharged
- Roughly speaking:
 - Each introduced variable has a scope that is as small as possible
 - Each assumption has a scope that is as large as possible, within the bounds of the previous constraint
- Natty also notices some words such as "now", "next" indicating that an assumption should end

Structure inference: words ending an assumption

Now let

```
G = \{ x \in \mathbb{N} \mid \text{for all } y \in \mathbb{N}, x < y \text{ or } x = y \text{ or } x > y \}.
```

We will show that $x \in G$ for all $x \in \mathbb{N}$. We start by showing that $0 \in G$. Let $y \in \mathbb{N}$. By Theorem 6.2 we know that $0 \le y$. It follows that y = 0 or y > 0. Hence $0 \in G$.

Now let $x \in \mathbb{N}$, and suppose that $x \in G$. We will show that $s(x) \in G$. Let $y \in \mathbb{N}$. By hypothesis we know that x < y or x = y or x > y.

First suppose that x < y. Then there is some $p \in \mathbb{N}$ such that x + p = y. If p = 0, then x = y, so s(x) > y by Theorem 6.1. If $p \ne 0$, then by Lemma 1 there is some $r \in \mathbb{N}$ such that p = s(r), which implies that x + s(r) = y, which implies s(x) + r = y, so $s(x) \le y$, so either s(x) < y or s(x) = y.

Next suppose that x = y. Then by Theorem 6.1 it follows that s(x) > x = y. Finally suppose that x > y. We know that s(x) > x, and by Theorem 6. 6 it follows that s(x) > y.

Putting the cases together, we see that s(x) < y or s(x) = y or s(x) > y always holds. Hence $s(x) \in G$, and we conclude that $G = \mathbb{N}$.

Adam Dingle Natural-Language Proofs 11 / 30

Interactive environment

- Visual Studio Code extension
- syntax coloring
- real-time type checking
- real-time proof checking
- Demo

Proof assistants: logical foundations

- First-order logic
 - Usual ZFC axioms or extensions such as MK (Morse-Kelley), TG (Tarski-Grothendieck)
 - Everything (functions, integers, ...) is built from sets
 - Mizar, Metamath, Naproche
- Higher-order set theory
 - TG axioms in higher-order logic
 - Megalodon, Naproche-ZF
- Classical higher-order logic
 - Evolved from Alonzo Church's work on simple type theory
 - Every variable has a type
 - Functions are primitive
 - Sets are usually functions of type $\tau \to \mathbb{B}$
 - HOL Light, Isabelle, Natty
- Dependent type theory
 - Martin-Lof type theory and descendents
 - Rocq, Lean
- Choice of foundation is visible to the user to some extent, and affects automated deduction

Adam Dingle Natural-Language Proofs 13 / 30

Natty's logic / type system

- Higher-order classical logic, like in HOL Light or Isabelle/HOL
- type system allows overloading
- ullet $+: \mathbb{N} o \mathbb{N} o \mathbb{N}$ and $+: \mathbb{Z} o \mathbb{Z} o \mathbb{Z}$ are distinguished
- no parametric polymorphism yet
- currently every variable must have a type
- inductive types and recursive functions must be defined axiomatically

Comparison with Naproche

	Naproche	Natty	
Logic	first-order	higher-order	
Input	LaTeX	plain text with Unicode	
Proof structure	explicit	implicit	
Prover	usually E	internal	
Written in	Haskell	OCaml	
IDE	Isabelle	Visual Studio Code	
Wiedjik thms proven	10	0	

Natty's internal prover

- developed because E, Vampire, other higher-order ATPs unable to prove all steps
- goal: prove easy proof steps quickly
- non-goal: prove difficult theorems (e.g. from TPTP)
- Naproche uses external first-order ATPs, which seem to do better
- open question: could Natty also use external ATPs with the right tricks?

Superposition

- superposition = inference rule for combining two formulas
- first-order superposition calculus developed in 1990s (Bachmair, Ganzinger)
- grew out of resolution + term rewriting
- higher-order superposition calculus (Blanchette et al, 2023)

Natty's internal prover

- partially implements the higher-order superposition calculus
- pragmatic, incomplete implementation
- very limited higher-order unification
- uses DISCOUNT loop as found e.g. in E
- destructive term rewriting
- lexicographic path order, with mapping from higher-order to first-order terms

Preserving formula structure

- Most provers convert all input formulas to clause normal form
- Natty (mostly) keeps formulas intact
- example: Peano induction axiom

$$\forall P: (\mathbb{N} \to \mathbb{B}).(P(0) \to \forall k: \mathbb{N}.(P(k) \to P(s(k))) \to \forall n: \mathbb{N}.P(n))$$

- Some clausification steps happen at inference time
- Attempts to imitate human-level reasoning
- Seems to help performance a bit, at the cost of some code complexity
- Makes debugging a lot easier

Main DISCOUNT loop

- DISCOUNT loop keeps formulas in two sets: P = processed, U = unprocessed
- ullet Initially P is empty, U contains all premises plus negated conjecture
- On each iteration:
 - $lue{1}$ choose a formula F from the unprocessed set U [critical step]
 - 2 rewrite F using formulas in P; rewrite formulas in P using F
 - 3 add F to P
 - lacktriangledown generate new formulas by combining F with each formula in P
 - $oldsymbol{\circ}$ add all newly generated formulas to U

Given formula selection

- Which formula to choose next from the unprocessed set?
- Most provers keep unprocessed formulas in multiple priority queues
- Natty has a single priority queue, ordered by formula cost
- Each superposition step has a cost, determined by a heuristic formula
- A formula's cost is the sum of the costs of all superpositions in its derivation

Heuristic cost of a superposition step

- Intuitively, "downhill" steps should be cheap
- In a downhill step, a formula's length and literal count do not increase
- \bullet Natty uses a decision tree to assign each step one of the costs 0, 1, 3, or ∞
- For now, this decision tree is constructed by hand
- Very roughly:
 - If a formula has fewer literals than both parents, or is shorter than both parents, cost is 0
 - \bullet If a formula has more literals than both parents, or is longer than both parents, cost is ∞
 - Otherwise, a resolution inference has cost 1, or a paramodulation inference has cost 3
- Special rules for definitions, goal clauses, inductive formulas

Learning the cost of a superposition step

- Can we use machine learning to derive a heuristic function?
- Modified Natty to record all formulas generated during the course of a proof
- ullet Each recorded formula has about 30 features (e.g. length, # of literals)
- We also record whether each formula was actually used in the proof
- Logistic regression model predicts probability that a formula with given features will be used
- Cost of the superposition producing ϕ is max(0, -L), where L is the logit value predicted by the regression model for ϕ
- This is roughly $-\log(P)$, where P is the predicted probability that ϕ will be used
- Lasso (ℓ_1) regularization can perform feature selection

The learned cost function

```
// The cost of a superposition step producing \phi from \psi_1, \psi_2.
Learned-Cost(\phi) =
  0.668
  + 0.041 if \phi was generated by paramodulation
  -0.030 if any ancestor of \phi is a hypothesis
  - 0.251 if any ancestor of \phi is the goal formula
  - 0.007 if \psi_1 or \psi_2 is a definition
  - 0.399 if \psi_1 or \psi_2 is an inductive formula
  -0.009 if lits(\phi) < min(lits(\psi_1), lits(\psi_2))
  + 0.007 if lits(\phi) > 1
  + 0.082 \cdot (lits(\phi) - lits(\psi_2))
  + 0.008 \cdot (\text{weight}(\phi) - \text{max}(\text{weight}(\psi_1), \text{weight}(\psi_2)))
  + 0.002 \cdot (\text{weight}(\phi) - \text{weight}(\psi_2))
  - 0.182 if \phi was generated by resolution and
            weight(\phi) < min(weight(\psi_1), weight(\psi_2))
```

Which cost function to use?

- Learned cost function performed about as well as the hand-generated decision tree
- Which is better? Choose your poison
- For now, Natty uses the hand-generated decision tree

What can Natty prove? How fast is it?

- Input file nat.n
- ullet defines $\mathbb N$ axiomatically using Peano postulates
- asserts/proves many basic identities about $\mathbb N$ (40 theorems, 225 proof steps)
- \bullet defines $\mathbb Z$ axiomatically as isomorphic to an equivalence class of $\mathbb N\times\mathbb N$
- ullet asserts/proves many basic identities about $\mathbb Z$ (28 theorems, 167 proof steps)

Performance comparison

With a 30-second time limit:

Table: Proof steps (\mathbb{N})

	Natty	Е	Vampire	Zipperposition
proved (of 225)	225	194	198	207
proved (%)	100%	86%	88%	92%
average time	0.17	0.45	1.01	0.88

Table: Proof steps (\mathbb{Z})

	Natty	Е	Vampire	Zipperposition
proved (of 167)	157	152	146	128
proved (%)	94%	91%	87%	77%
average time	1.08	0.20	1.05	1.35

Note that Natty has term no indexing yet!

Adam Dingle Natural-Language Proofs 27 / 30

Future work

- Goal: verify more math, starting with number theory
- Expand controlled natural language
- Prover enhancements
 - term index
 - use theorem references such as "By theorem 4, ..."
 - premise selection/weighting
 - experiment with lexicographic path order vs. Knuth-Bendix ordering
 - experiment with literal selection
 - possibly use E or Vampire some of the time, e.g. for first-order inference
- Create a benchmark suite of formulas derived from natural-language proof steps

Open questions

- Is superposition the best approach for proving "easy" proof steps?
- Sometimes steps that look trivial take a very long time to prove!
- Destructive term rewriting can transform an easy problem into a hard one
 - What to do about this?
- Superposition is not really goal-oriented
- Can we make it more like A*, favoring steps that take us closer to the goal?

Questions?