
AITP 2025

Natural-Language Proofs with Higher-Order Logic

Adam Dingle

Charles University, Prague

September 4, 2025

Adam Dingle Natural-Language Proofs 1 / 30

Natty: a natural-language proof assistant

I described Natty at AITP last year

today: an update on Natty’s capabilities, challenges ahead

Adam Dingle Natural-Language Proofs 2 / 30

Can automatic provers follow steps in real-world proofs?

Take a proof written in natural language

Convert each step to a logical formula

Use an automatic prover to verify each formula

Is this possible in general?

If so, life is good!
If not, why not?

Adam Dingle Natural-Language Proofs 3 / 30

Can automatic provers follow steps in real-world proofs?

Take a proof [in what domain?] written in [controlled?] natural
language

Convert each step to a logical formula [in what logic?]

Use an automatic prover to verify each formula

Is this possible in general? [how quickly? how reliably?]

If so, life is good!
If not, why not?

Adam Dingle Natural-Language Proofs 3 / 30

Can automatic provers follow steps in real-world proofs?

Take an undergraduate textbook proof in lightly controlled natural
language

Convert each step to a formula in first-order or higher-order logic

Use an automatic prover to verify each formula
in < 30s (ideally < 5s), 100% of the time

Is this possible in general?

Hopefully yes, but verification is not as easy as you might think
...especially if there are many known theorems

Adam Dingle Natural-Language Proofs 4 / 30

Natty: a natural-language proof assistant

Input: math in controlled natural language, as natural as possible

Natty converts proof steps to formulas of higher-order logic

...and proves them using internal superposition-based prover

Can export each proof step to a THF file for comparison with other
provers

Broadly, goals are similar to Naproche

Adam Dingle Natural-Language Proofs 5 / 30

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

$(Prove a theorem $)
th1 $p |- t = t $=

$(Here is its proof: $)
tt tze tpl tt weq tt tt weq tt a2 tt tze tpl

tt weq tt tze tpl tt weq tt tt weq wim tt a2

tt tze tpl tt tt a1 mp mp

$.

Adam Dingle Natural-Language Proofs 6 / 30

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

definition

let n be Nat;

func cseq n -> Real_Sequence means :Def3: :: IRRAT_1:def 3

for k being Nat holds it . k = (n choose k) * (n ^ (- k));

correctness

proof end;

end;

Adam Dingle Natural-Language Proofs 6 / 30

Proof assistants: a spectrum of naturalness

Metamath HOL Light Isabelle Mizar
Naproche
Natty

←− Less natural More natural −→

Adam Dingle Natural-Language Proofs 6 / 30

Sample input 1: definition of N

Adam Dingle Natural-Language Proofs 7 / 30

Sample input 2: proof of right cancellation

Adam Dingle Natural-Language Proofs 8 / 30

Controlled natural language input

plain text with Unicode characters

axioms, definitions, theorems with or without proofs

rich set of synonyms for typical mathematical texts

implicit multiplication, disambiguated using type information

set comprehension notation

Every type (e.g. N) is also the universal set of that type (i.e. λx .⊤)
Proof steps can say which theorem(s) to use (“By Theorem 3.5...”)

...though Natty currently ignores these annotations

Adam Dingle Natural-Language Proofs 9 / 30

Proof structure inference

In natural-language proofs, block structure is often implicit

Natty’s parser outputs a linear series of proof steps

Natty uses heuristics to arrange these steps into a tree, indicating
where assumptions will be discharged

Roughly speaking:
1 Each introduced variable has a scope that is as small as possible
2 Each assumption has a scope that is as large as possible, within the

bounds of the previous constraint

Natty also notices some words such as “now”, “next” indicating that
an assumption should end

Adam Dingle Natural-Language Proofs 10 / 30

Structure inference: words ending an assumption

Adam Dingle Natural-Language Proofs 11 / 30

Interactive environment

Visual Studio Code extension

syntax coloring

real-time type checking

real-time proof checking

Demo

Adam Dingle Natural-Language Proofs 12 / 30

Proof assistants: logical foundations

First-order logic
Usual ZFC axioms or extensions such as MK (Morse-Kelley),
TG (Tarski-Grothendieck)
Everything (functions, integers, ...) is built from sets
Mizar, Metamath, Naproche

Higher-order set theory
TG axioms in higher-order logic
Megalodon, Naproche-ZF

Classical higher-order logic
Evolved from Alonzo Church’s work on simple type theory
Every variable has a type
Functions are primitive
Sets are usually functions of type τ → B
HOL Light, Isabelle, Natty

Dependent type theory
Martin-Lof type theory and descendents
Rocq, Lean

Choice of foundation is visible to the user to some extent, and affects
automated deduction

Adam Dingle Natural-Language Proofs 13 / 30

Natty’s logic / type system

Higher-order classical logic, like in HOL Light or Isabelle/HOL

type system allows overloading

+ : N → N → N and + : Z → Z → Z are distinguished

no parametric polymorphism yet

currently every variable must have a type

inductive types and recursive functions must be defined axiomatically

Adam Dingle Natural-Language Proofs 14 / 30

Comparison with Naproche

Naproche Natty
Logic first-order higher-order
Input LaTeX plain text with Unicode

Proof structure explicit implicit
Prover usually E internal

Written in Haskell OCaml
IDE Isabelle Visual Studio Code

Wiedjik thms proven 10 0

Adam Dingle Natural-Language Proofs 15 / 30

Natty’s internal prover

developed because E, Vampire, other higher-order ATPs unable to
prove all steps

goal: prove easy proof steps quickly

non-goal: prove difficult theorems (e.g. from TPTP)

Naproche uses external first-order ATPs, which seem to do better

open question: could Natty also use external ATPs with the right
tricks?

Adam Dingle Natural-Language Proofs 16 / 30

Superposition

superposition = inference rule for combining two formulas

first-order superposition calculus developed in 1990s (Bachmair,
Ganzinger)

grew out of resolution + term rewriting

higher-order superposition calculus (Blanchette et al, 2023)

Adam Dingle Natural-Language Proofs 17 / 30

Natty’s internal prover

partially implements the higher-order superposition calculus

pragmatic, incomplete implementation

very limited higher-order unification

uses DISCOUNT loop as found e.g. in E

destructive term rewriting

lexicographic path order, with mapping from higher-order to
first-order terms

Adam Dingle Natural-Language Proofs 18 / 30

Preserving formula structure

Most provers convert all input formulas to clause normal form

Natty (mostly) keeps formulas intact

example: Peano induction axiom

∀∀∀P : (N→→→ B).(P(0)→→→∀∀∀k : N.(P(k)→→→ P(s(k)))→→→∀∀∀n : N.P(n))

Some clausification steps happen at inference time

Attempts to imitate human-level reasoning

Seems to help performance a bit, at the cost of some code complexity

Makes debugging a lot easier

Adam Dingle Natural-Language Proofs 19 / 30

Main DISCOUNT loop

DISCOUNT loop keeps formulas in two sets: P = processed,
U = unprocessed

Initially P is empty, U contains all premises plus negated conjecture

On each iteration:
1 choose a formula F from the unprocessed set U [critical step]
2 rewrite F using formulas in P; rewrite formulas in P using F
3 add F to P
4 generate new formulas by combining F with each formula in P
5 add all newly generated formulas to U

Adam Dingle Natural-Language Proofs 20 / 30

Given formula selection

Which formula to choose next from the unprocessed set?

Most provers keep unprocessed formulas in multiple priority queues

Natty has a single priority queue, ordered by formula cost

Each superposition step has a cost, determined by a heuristic formula

A formula’s cost is the sum of the costs of all superpositions in its
derivation

Adam Dingle Natural-Language Proofs 21 / 30

Heuristic cost of a superposition step

Intuitively, “downhill” steps should be cheap

In a downhill step, a formula’s length and literal count do not increase

Natty uses a decision tree to assign each step one of the costs 0, 1, 3,
or ∞
For now, this decision tree is constructed by hand

Very roughly:

If a formula has fewer literals than both parents, or is shorter than both
parents, cost is 0
If a formula has more literals than both parents, or is longer than both
parents, cost is ∞
Otherwise, a resolution inference has cost 1, or a paramodulation
inference has cost 3

Special rules for definitions, goal clauses, inductive formulas

Adam Dingle Natural-Language Proofs 22 / 30

Learning the cost of a superposition step

Can we use machine learning to derive a heuristic function?

Modified Natty to record all formulas generated during the course of
a proof

Each recorded formula has about 30 features (e.g. length, # of
literals)

We also record whether each formula was actually used in the proof

Logistic regression model predicts probability that a formula with
given features will be used

Cost of the superposition producing ϕ is max(0,−L), where L is the
logit value predicted by the regression model for ϕ

This is roughly − log(P), where P is the predicted probability that ϕ
will be used

Lasso (ℓ1) regularization can perform feature selection

Adam Dingle Natural-Language Proofs 23 / 30

The learned cost function

// The cost of a superposition step producing ϕ from ψ1, ψ2.
Learned-Cost(ϕ) =
0.668
+ 0.041 if ϕ was generated by paramodulation
− 0.030 if any ancestor of ϕ is a hypothesis
− 0.251 if any ancestor of ϕ is the goal formula
− 0.007 if ψ1 or ψ2 is a definition
− 0.399 if ψ1 or ψ2 is an inductive formula
− 0.009 if lits(ϕ) < min(lits(ψ1), lits(ψ2))
+ 0.007 if lits(ϕ) > 1
+ 0.082 · (lits(ϕ)− lits(ψ2))
+ 0.008 · (weight(ϕ)−max(weight(ψ1),weight(ψ2)))
+ 0.002 · (weight(ϕ)− weight(ψ2))
− 0.182 if ϕ was generated by resolution and

weight(ϕ) < min(weight(ψ1), weight(ψ2))

Adam Dingle Natural-Language Proofs 24 / 30

Which cost function to use?

Learned cost function performed about as well as the hand-generated
decision tree

Which is better? Choose your poison

For now, Natty uses the hand-generated decision tree

Adam Dingle Natural-Language Proofs 25 / 30

What can Natty prove? How fast is it?

Input file nat.n

defines N axiomatically using Peano postulates

asserts/proves many basic identities about N (40 theorems,
225 proof steps)

defines Z axiomatically as isomorphic to an equivalence class of N x N
asserts/proves many basic identities about Z (28 theorems,
167 proof steps)

Adam Dingle Natural-Language Proofs 26 / 30

Performance comparison

With a 30-second time limit:

Table: Proof steps (N)

Natty E Vampire Zipperposition

proved (of 225) 225 194 198 207
proved (%) 100% 86% 88% 92%
average time 0.17 0.45 1.01 0.88

Table: Proof steps (Z)

Natty E Vampire Zipperposition

proved (of 167) 157 152 146 128
proved (%) 94% 91% 87% 77%
average time 1.08 0.20 1.05 1.35

Note that Natty has term no indexing yet!
Adam Dingle Natural-Language Proofs 27 / 30

Future work

Goal: verify more math, starting with number theory

Expand controlled natural language

Prover enhancements

term index
use theorem references such as “By theorem 4, ...”
premise selection/weighting
experiment with lexicographic path order vs. Knuth-Bendix ordering
experiment with literal selection
possibly use E or Vampire some of the time, e.g. for first-order
inference

Create a benchmark suite of formulas derived from natural-language
proof steps

Adam Dingle Natural-Language Proofs 28 / 30

Open questions

Is superposition the best approach for proving “easy” proof steps?

Sometimes steps that look trivial take a very long time to prove!

Destructive term rewriting can transform an easy problem into a hard
one

What to do about this?

Superposition is not really goal-oriented

Can we make it more like A*, favoring steps that take us closer to the
goal?

Adam Dingle Natural-Language Proofs 29 / 30

Questions?

Adam Dingle Natural-Language Proofs 30 / 30

