Learning Conjecturing from Scratch

Thibault Gauthier, Josef Urban

Czech Technical University in Prague, Czech Republic

Abstract

We develop a self-learning approach for conjecturing induction predicates on a dataset
of 14005 problems derived from the OEIS. These problems are hard for today’s SMT and
ATP systems because they require a combination of inductive and arithmetical reasoning.
Starting from scratch, our approach consists of a feedback loop that iterates between (i)
training a neural translator to learn the correspondence between the problems solved so
far and the induction predicates useful for them, (ii) using the trained neural system to
generate many new induction predicates for the problems, (iii) fast runs of the Z3 prover
attempting to prove the problems using the generated predicates, (iv) using heuristics such
as predicate size and solution speed on the proved problems to choose the best predicates
for the next iteration of training. The algorithm discovers on its own many interesting
induction predicates, ultimately solving 3590 problems, compared to 835 problems solved
by CVC5, Vampire or Z3 in 60 seconds.

Introduction Proof by induction is a fundamental tool in mathematics, essential for reason-
ing about inductive structures such as trees, lists or integers. Efficient automation of induction
is a key challenge in automated theorem proving (ATP), with direct implications for software
verification and mathematical research. Reasoning about integer sequences is a major source
of induction problems. The Online Encyclopedia of Integer Sequences (OEIS) [7] catalogs over
350,000 sequences, often with multiple proposed explanations. Verifying the equivalence of
these explanations ranges from easy to extremely difficult, with some cases still open conjec-
tures. Our program synthesis Al [5] has generated millions of such explanations, covering over
130,000 OEIS sequences. New algorithms discovered by the system are typically tested on fi-
nite prefixes, but ideally, we would like to prove their correctness and also their equivalence
to known algorithms. Automated theorem provers (ATPs) capable of this would significantly
improve the reliability of such Al-generated algorithms, allowing also their verified optimiza-
tion.! To evaluate the ATP performance on such tasks, the OEIS ATP benchmark [4]* was
introduced. It consists of SMT [1] problems requiring proofs of equivalence between a small
and a fast program for the same OEIS sequence. Baseline results show that current ATPs and
SMTs struggle: out of 14,005 problems, the best system (CVC5) solved only 601.

Approach We develop a self-learning approach for synthesizing instances of second-order
induction which are useful for solving the OEIS benchmark problems with the z3 [3] SMT solver.
Our general approach is to adapt our Al-based approach for synthesizing OEIS programs to
create conjectures to be proven by induction. Such conjectures are referred to as induction
predicates.

Induction Predicate Language To this end, we first implement a translation from the
language of the OEIS programs to the SMT format. We define the language of induction
predicates and particularly recursive functions that can be derived from loop constructions in
our original language. This way, we translate a program equivalence into an equivalence between
recursive functions and conjecture induction predicates (properties) on these functions.

1See https://t.1y/qd626 for a discussion of an Al-invented algorithm for /2.
2https://github.com/aidreason/oeis-atp-benchmark

https://t.ly/qd626
https://github.com/ai4reason/oeis-atp-benchmark

Learning Conjecturing from Scratch T. Gauthier, J. Urban

Initial Brute-Force Generation In our language for the induction predicates, we develop
an initial brute-force method for generating a set of sufficiently diverse predicates, suitable for
starting the self-learning loop. Here, we introduce several pruning methods useful for exploring
the large space of our induction predicates. This includes semantic evaluation, selection of only
the true predicates, fingerprinting to avoid generation of equivalent predicates, and restricting
the language to the most relevant functions.

Evaluation of Predicates We introduce methods for evaluation, selection and minimization
of the invented predicates using z3. This is an important part of the overall system, which
evaluates the quality of our conjectures. A conjecture (or set of conjectures) is selected if it is
either smaller or makes the proof faster than previous conjectures solving the same problem.
Selected conjectures are added to our dataset for training our machine learning model.

Predicate Generation via Self-Learning We then develop our self-learning loop which it-
erates between (i) training a neural machine translation (NMT) model [6] on previously discov-
ered problem /solution pairs, (ii) generating new predicates for all problems, and (iii) evaluating
them with z3. This process continuously improves the generation and selection of predicates,
which are in turn used for training, after applying data-augmentation methods. We experi-
ment with several long self-learning runs which ultimately prove 3590 of the 14005 problems.
This also results in a strong trained NMT+ATP system that proves 3501 problems in at most
48 seconds, and a large dataset of useful induction predicates. For comparison, we develop a
strong baseline methods which use manual heuristics for induction. The strongest one proves
2497 problems in 10 seconds, and the union of these baseline methods prove 3285 problems.
We show that the union of the manual and self-learning approaches solves 4350 problems, i.e.,
the feedback loop adds 1065 problems to those solved by manual heuristics.

Example One of the 1065 problems solved only by our Al-based conjecture generation in-
volves the OEIS sequence A26532, defined by a(0) = 1 and a(n + 1) = if n is even then 2 x
a(n) else 3xa(n). Our system automatically conjectured a small and a fast program for A26532:

small Fast
H(2+km0d2):6L%J>< 1 ifzmod2=0
k=1 3 otherwise

It then proved the equality between two programs by synthesizing induction predicates.
While this can be proved manually using induction, synthesizing and verifying such identities
automatically remains a core challenge in automated reasoning.

The code for our project is available at https://github.com/barakeel/oeis-synthesis.

https://github.com/barakeel/oeis-synthesis

Learning Conjecturing from Scratch T. Gauthier, J. Urban

References

[1] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB standard: Version 2.0. In Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, Scotland),
volume 13, page 14, 2010.

[2] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and
Frederik Vercauteren, editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman
and Hall/CRC, 2005.

[3] Leonardo Mendonga de Moura and Nikolaj S. Bjgrner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 337-340. Springer,
2008.

[4] Thibault Gauthier, Chad E. Brown, Mikolas Janota, and Josef Urban. A mathematical bench-
mark for inductive theorem provers. In Ruzica Piskac and Andrei Voronkov, editors, LPAR 2023:
Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Manizales, Colombia, 4-9th June 2023, volume 94 of EPiC Series in Computing, pages
224-237. EasyChair, 2023.

[5] Thibault Gauthier, Miroslav Olsak, and Josef Urban. Alien coding. Int. J. Approz. Reason.,
162:109009, 2023.

[6] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[7] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. In Manuel Kauers, Manfred
Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mechanized Mathematical As-
sistants, 14th Symposium, Calculemus 2007, 6th International Conference, MKM 2007, Hagenberg,
Austria, June 27-30, 2007, Proceedings, volume 4573 of Lecture Notes in Computer Science, page
130. Springer, 2007.

A Examples

We present a selection of example problems found during the self-learning runs but not found
when manually adding induction predicates. In more detail, given an induction predicate @,
we always produce a first-order axiom (over Z) by instantiating the following second-order
induction axiom with Q:

VP. ((Vy. P(0,y)) A (Vzy. P(z,y) = P(z+ 1,9))) = (Vzy. 0 <z = P(z,y)) (Ind)

Example 1 (A2411: Pentagonal pyramidal numbers)
This problem is a variation of the famous Gaussian sum.

Problem: loop(X +Y,X,0) xX = (X x X)+ X) div 2) x X

v

T XT+2x

5 x x Solution (predicate): 0 <z Az Xz 42 =2 X v(z)

xr
Math: = x Y k=
k=1
The proof requires one predicate on the loop function v defining loop(X + Y, X,0). We can
also observe that our machine learning algorithm restricted the induction step to nonnegative
integers by adding the conjunct 0 < z.

https://oeis.org/A002411

Learning Conjecturing from Scratch T. Gauthier, J. Urban

Example 2 (A59826)
This problem is another summation problem that additionally requires a generalization step as
a direct induction on the problem equality would fail.

Problem: loop(X +Y +Y, X x X,1) =14 (14 X x X) x (X x X)
rXx

Math: 1+ Z 2k = x* + 22 +1 Solution (predicate): u(z,1) — 1=z x z +x (P2)
k=1

The function w is the helper function for the loop(X + Y + Y, X x X,1). Thus, u(z,y) =
Y+ > p_q2kand u(x,1) =1+ > 7_, 2k =1+ (x x x4+ x). Our system conjectured the general
lemma P2 and indeed proved it by induction. P2 can then be instantiated by x x x to prove the
problem. There is no easy way how to prove the problem directly by induction over n previous
steps where n is fixed.

Example 3 (A1026: powers of 17) This problem presents two ways of computing the powers
of 17. The fast program w saves time by storing the value of 17 =1+ (2 x (2 x (2+ 2))) into
the second component s of loop2 whereas the small program v recomputes 17 at every iteration
of loop. The value 17 is computed as 1+ (2 X (2 x (24 2))) in the fast program whereas in the
small program the update function f defining loop(X x X,2,2) x X + X can be simplified to
16x X +X =17 x X.

Problem: loop(17 x X, X, 1) = loop2(X x Y,Y, X, 1,17)

Math: v(z) and w(z) are equivalent, where ’U(O) =Lov(z+1) =17 x v(z)
and (w(0),s(0)) = (1,17), (w(z + 1), s(z + 1)) = (w(z) x s(x), s(z))

Solution: v(x) = w(x) A s(z) = v(1)

In the solution, the function v corresponds to the outermost loop of the left-hand side and
the functions w and s correspond to the loop2 program on the right-hand side. The second
conjunct states s is a constant function. This fact is helpful to inductively prove the first
conjunct expressing the equality between the two loop functions v and w.

Example 4 (A205646: empty faces in Freij’s family of Hansen polytopes)
We first simplify the original problem by evaluating constant programs and reducing polyno-
mials. The problem can then be restated as:
loop(3 x X, X,1) 416 = loop2(X X Y)Y, X div 2,loop(3,x mod 2,1),9)) +16
| ——

v w,s

Mathematically, the equation is 3% + 16 = 3= mod 2) » 9z diw 2) L 16 The fast program is
saving time by computing 3% as 3(* med 2) x 9(= div 2) (this is the basis of the fast exponentiation
algorithm [2]). Similarly to the previous example, it also stores the value of 9 =1+ 2 x (2+2)
in the second component of the loop y to avoid recomputing it at each iteration of the loop.
The solution consists of 6 predicates:

w(l+z)=v(l+z)ANw(z) =v(),v()=w) ANw(l+z)=v(l+z)
z <w(2),z <w(x),s(x) =s(1),s(x+1) =s(x)

http://oeis.org/A059826
http://oeis.org/A001026
http://oeis.org/A205646

Learning Conjecturing from Scratch T. Gauthier, J. Urban

The first two predicates (which are equivalent) allow z3 to prove the statement by doing an
induction over the two previous steps, which is necessary and thus z3 can perform case splitting
on whether the number of iteration is even or odd. The last two predicates state that s is
constant. We are not sure of the purpose of the predicates x < w(2) and z < w(z). Yet,
we know that z3 is not able to find a proof when these predicates are removed because the
minimization step would have removed them already.

	Examples

