Reaping the first fruits of the Isabelle/RL project

Jonathan Julidn Huerta y Munive!

Czech Institute of Informatics, Robotics and Cybernetics,
Czech Technical University in Prague,
Jugosldvskych partyzédna 1580/3, Prague, Czechia
huertjon@cvut.cz

Abstract

The proposed presentation aims to update the audience on the achievements of the
Isabelle/RL project presented at AITP 2024. In particular, the project has contributed an
openly available framework for interacting in Python with the Isabelle proof assistant, a
small-scale experiment evaluating the proof capabilities of 5 encoder-decoder transformers,
and the use of the framework for creating a tool that automatically fixes (simple) broken
verification proofs due to small changes in the upstream theory stack. The presentation
also aims to discuss future research avenues from the existence of this framework.

The Isabelle/RL project, proposed in AITP 2024 [4], has grown from a simple data-
extraction algorithm for the Isabelle interactive theorem prover (ITP) to a set of tools for
interfacing with the prover, training and evaluating machine learning models, and proving sim-
ple Isabelle theorems with them. Despite this progress, the project’s objectives have not been
attained yet. This extended abstract discusses the project’s achievements and upcoming steps.

Achievements The project has attained the following milestones:

1. A data-extraction algorithm with a Scala and a Python command line interface. The al-
gorithm complements older Isabelle-focused approaches [6, 7] by supplying typing data for
constants and variables which has been previously reported as missing [8]. To run the algo-
rithm, users must specify a “read” directory and an “output” directory. The read directory
must have at least one .thy file. Users can include a ROOT file describing an Isabelle session, or
a ROOTS file listing several sessions with their own directories, ROOT files, and .thy files. The
output directory will mimic the structure of the read directory. Additionally, it will create a
directory for each .thy file, with the same name, and containing one . json file for each proof
in the original .thy file. An example of a generated .json can be seen in Appendix A.

2. Python-based training and evaluation loops for Google’s T5 [1, 9] and Gemma 3n [11]
models. Chosen for their relatively small sizes and open availability, most users can download
these models and run them locally. The project has produced various versions of the T5
models which are publicly available in a snapshot of the project’s repository [5]. Specifically,
for computational and time constraints, the project has not used the large (783M parameters),
x1 (2.85B), and xx1 (11.3B) versions of the google/flan-t5 family of models. Instead, it has
focused on training from scratch and fine-tuning the small (77M) and base (248M) varieties. A
comparison of the proving capabilities of these models appears in Table 1. The T5 models have
a typical encoder-decoder architecture, very similar to that of the original transformer [12] with
minor changes [9], while the Gemma 3n model (2B) has a Matryoshka architecture described
as nesting a smaller model within a larger model. Upcoming work will evaluate the Gemma 3n
model and compare the current results with more architectures.

3. Scala and Python read-eval-print-loops (REPLSs) for interacting with the prover program-
matically. The objective is to enable users to interface their models with Isabelle purely on the
Python side, where popular libraries for machine learning abound (e.g. Hugging Face, Unsloth,
Axolotl, Gymnasium). As before, the REPLs receive as input (at most) a “logic” (an Isabelle



Isabelle/RL J. J. Huerta y Munive

session) and the name of a .thy file, enabling them to load Isabelle at the appropriate proof
context. From there, simple commands (e.g. apply, reset, undo) enable users to execute or
undo Isabelle “actions” by using as arguments typical Isabelle-user strings. Other methods
provide context information (e.g. last_proof_of, is_at_proof, or 1ast,error). As output,
the REPL prints the output that users would usually see in Isabelle’s output panel.

4. A depth-first search (DFS) algorithm for evaluating the models’ ability to prove theorems
from a specified split (train, validation, or test) of the generated data. Crucially, the DFS loop
leverages the Python REPL and the trained/fine-tuned models. For each logic in the split, the
loop loads the REPL in the appropriate Isabelle context and queries the model for the next
Isabelle step. The breadth and depth of attempts in the DF'S algorithm are controlled from an
input . json configuration file. The results of the evaluation for the T5 models with 5 attempts
up to 5-levels deep in the proof appear in Table 1. Future work will explore variations of these
meta-parameters and apply the DFS loop to the recently fine-tuned Gemma 3n model.

6. The knowledge and tools used here have been crucial for developing the super_fix tool
for automatically repairing large proof scripts leveraging Sledgehammer [10]. In a large proof
development with several iterations, manual calls to Sledgehammer for fixing easy but broken
proof steps do not scale. Instead, super_fix uses the Isabelle/RL project’s libraries to traverse
.thy files with failed proof steps and automatically replace them with updated versions. The
tool has been used in a large mechanised proof of properties of a cache coherence protocol [10].
Extensions to the tool leveraging the LLMs are upcoming work.

7. The project has applied the data extraction algorithm to the AFP (2024). It has also used
the DF'S loop to perform a small-scale experiment comparing different training configurations
for the TH models. That is, it evaluates the models’ ability to prove theorems via the DFS
varying the training setup (from scratch or fine-tuning) and the data extend (whether to include
premises and keywords or not). The project has published a snapshot of the models’ weights
and the algorithm for this experiment in a publicly available snapshot [5]. A summary of the
models’ behaviour appears below:

Model Predictions Progress steps Attempts Finished Avg. time
small_s 4,185,571 62.48% 24,071 6.63% 48.92 s
finet_small s 2,055,838 37.29% 24,740 11.46% 40.09 s
small_spk 1,859,629 49.01% 27,597 8.55% 29.84 s
base_s 2,983,954 60.65% 20,252 8.92% 50.33 s
finet_base_spk 2,315,016 52.57% 38,532 16.71% 53.28 s

Table 1: Evaluation of T5 models on automatically proving theorems

The column Progress steps tells the percentage of model predictions (first column) that were
accepted by the ITP but that do not necessarily finish the proof. The column Finished displays
the percentage of automatically completed proofs out of all the attempted ones (third column).
The last column indicates the average amount of time that each model spent processing the
attempted proofs. The finet prefix indicates that the model was fine-tuned on the project’s
data. If the prefix is not available, the model has only been pre-trained. The two sizes small
(77M parameters) and base (248M parameters) also appear in Table 1. Finally, the suffix spk
indicates that the data includes, besides the user-proof up to that point, the user-seen state, the
premises that the user used to complete the proof, and the available keywords at that point.
This is in contrast to the suffix s that only adds the user-state to the proof up to that point.

Next steps The project is currently focused on calling next-step suggestion external func-
tions, such as those by the trained models, via the Isabelle proof assistant. The objective is to



Isabelle/RL J. J. Huerta y Munive

simplify the tooling process so that future developments in automated theorem proving can be
immediately adapted as an Isabelle tool. To that purpose, the project has already created a
Python server and a Standard ML client that are being adapted to query the trained language
models via Isabelle. Currently, one needs to provide the path to the current file and the line
number (where the prediction must be made) as an Isabelle tactic. The model recommends
the next step and sends it back to Isabelle, which displays it in its output panel. We are in
constant communication with the Isabelle developers who have already provided extensions to
Isabelle that facilitate reimplementing our methods via official Isabelle tools.

The small-scale experiment is easy enough to set up that trying more recently optimised
models with the framework, such as Gemma 3 [11] or DeepSeek R1 [2], should be fairly simple
and executed in parallel with other objectives of the project. The project has already fine-tuned
a Gemma 3n model, and it is in the process of evaluating it in the DFS loop.

Finally, the project’s initial objective was to turn Isabelle into a reinforcement learning
environment. The amount of data generated from the project is not representative of all the
knowledge that Isabelle users acquire to tackle the provers’ interactive commands. The expec-
tation is that a reinforcement learning setting will enable a machine learning model to estimate
a distribution based on more varied data.

As such, the project intends to implement a Markov Decision Process (MDP) (S, A, T, R)
such that the states (.S) correspond to the context-dependent data used in the above evaluations,
the actions (A) correspond to user actions (combinations of proof-commands and arguments
that the prover accepts), the (learned) transition function (7") assigns a “probability” of success
to each action, and the reward function (R) awards the most points for early proof completions
but still positive points for non-repeated proof progress. Iterative improvements to the reward
function will be guided by the study and analysis of its previous versions.

1 Acknowledgments

A Horizon MSCA 2022 Postdoctoral Fellowship (project acronym DeeplsaHOL and number
101102608) support this project. Views and opinions expressed are however those of the au-
thor(s) only and do not necessarily reflect those of the European Union or the European Re-
search Executive Agency. Neither the European Union nor the European Research Executive
Agency can be held responsible for them.

References

[1] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dali,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models. https://arxiv.org/abs/2210.11416, 2022.

[2] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. https://arxiv.org/abs/2501.12948.

[3] Huerta y Munive, Jonathan Julidn. Isabelle/RL project proposal: Reinforcement learning on the
Isabelle proof assistant. AITP2024. EasyChair, 2024.

[4] Huerta y Munive, Jonathan Julidn. Snapshot of contributions from the DeepIsaHOL project,
March 2025. https://doi.org/10.5281/zenodo.15080049.


https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2501.12948
https://doi.org/10.5281/zenodo.15080049

Isabelle/RL J. J. Huerta y Munive

5]

(6]

(7l

(9]

(10]

(11]

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygézdz,
Piotr Milos, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. In NeurlPS 2022, 2022.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In ICLR 2025. OpenReview.net, 2023.

Maciej Mikula, Szymon Antoniak, Szymon Tworkowski, Albert Qiaochu Jiang, Jin Peng Zhou,
Christian Szegedy, Lukasz Kucinski, Piotr Milos, and Yuhuai Wu. Magnushammer: A transformer-
based approach to premise selection. CoRR, abs/2303.04488, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Chengsong Tan, Alastair F Donaldson, Huerta y Munive, Jonathan Julidn, and John Wickerson.
The burden of proof: Automated tooling for rapid iteration on large mechanised proofs. 2025.
https://doi.org/10.1109/FormaliSE66629.2025.00010.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev,
Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Pa-
terson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément
Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng
Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Kather-
ine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid,
Maciej Mikula, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem,
Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ra-
mona Comanescu, Reena Jana, Rohan Anil, Ross Mcllroy, Ruibo Liu, Ryan Mullins, Samuel L
Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, So-
ham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Za-
farali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol
Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle
Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev,
and Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024.
https://arxiv.org/abs/2403.08295.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages 5998-6008, 2017. https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract . html.


https://doi.org/10.1109/FormaliSE66629.2025.00010
https://arxiv.org/abs/2403.08295
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

40

Isabelle/RL J. J. Huerta y Munive

A Appendix: Format and content of generated data

{
"proof": {
"steps": [
{
"step": {
"action": "lemma in_empty_table[simpl: \"\<not> x \<in>
empty_table\"",
"user_state": "",
"term": "x \<notin> empty_table \<Longrightarrow> (x \<notin>
empty_table)",
"hyps": [J,
"proven": [],
"variables": [{"TypeO": "x :: ’a"}],
"constants": [
{"TypeO": "Pure.prop :: prop \<Rightarrow> prop"},
{"Typel": "empty_table :: ’a set"},
{"Type5": "(\<Longrightarrow>) :: prop \<Rightarrow> prop \<
Rightarrow> prop"}
s
"type variables": [{"SortO": "’a :: type"}]
}
¥
{ ... }Y // Other steps omitted for brevity
1o
"apply_kwrds": [
{"name": "\\<proof>"},
{"name": "sorry"},
{"name": "..."}, // Many apply-style commands omitted
]’
"isar_kwrds": [
{"name": "define"},
{"name": "assume"},
{"name": "..."}, // Many Isar-style commands omitted
P
"methods": [
{"name": "Metis.metis"},
{"name": "Transfer.transfer_prover_start"},
{"name": "..."}, // Many methods omitted
1o
"deps": [
{"thm": {"name": "Pure.protectIPure.protectI", "term": "PROP 7A \<
Longrightarrow> (PROP 7A)"}},
{"thm": {"name": "HOL.eq_reflectionHOL.eq_reflection", "term": "7x

= 7y \<Longrightarrow> 7x \<equiv> 7y"}},
// More dependencies omitted




	1 Acknowledgments
	References
	A Appendix: Format and content of generated data

