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1 Introduction

In this paper, we describe a structure-driven neural premise selection setup for a dependent type
theory, and present an implementation for Agda. In a premise selection setup, the statistical
learner is presented with a goal statement and a collection of theorems or lemmas, some of
which are potentially relevant for the proof process, whereas others are not. A statistical model
is then tasked with selecting which of those lemmas are relevant.

Modeling strategies can be broadly grouped into two general categories. Historically, the
dominant approach has been sequence-based encoder and/or decoder architectures, operating
on the user-facing representation of formal objects (theorems, formulas, lemmas, etc.) – more
recently, this approach has been further empowered by its direct compatibility with large lan-
guage models. The alternative approach has sought to explicate the relations that exist within
and between these objects, e.g., with tree and graph architectures.

In this paper, we seek to address two key limitations in the existing literature.
� Machine Learning for Agda While a plurality of datasets, models and tools are avail-

able for a handful of languages, chiefly HOL [1, 6], Coq [4] and Lean [16], none exist
for Agda. We believe that this state of affairs is an effect of historical momentum and
methodological precedence, rather than inherent merit. Agda spearheads developments
in constructive type theory with an array of innovative features, gaining adoption and a
rapidly maturing ecosystem. Aiming to aid Agda with meeting and expanding her poten-
tial, we implemented an algorithm, agda2train, that extracts intermediate compilation
steps, and produces them in the form of human-readable partial proof states. Applying
agda2train on established high-quality libraries, we obtain and release an elaborate and
extensive dataset of Agda program-proofs, at a scale and form that can support various
machine learning applications – the first of its kind.

� Modeling Type Structure We also note a significant gap between the rigor of the
structures modeled and the lenience of the architectures employed in prior work [3, 5,
10, 12–14, 17]. While there are efforts to reflect certain aspects of type structure in
models, [2, 9, 11, 15] our aim is to develop a learning scheme which faithfully represents
of expressions involving dependent types. We apply our methodology on the extracted
dataset to produce Quill: a proof-of-concept neural guidance tool for Agda. Beyond its
current use case, the system is universal, in the sense of being applicable to any language
that uses type theory as its foundational core.

2 Data

Data is extracted from source Agda programs in a way that is mindful of type structure. We
allow Agda to infer and type-check program-proofs, and then consult her for their internal
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representations, which we store mostly unchanged. From then, we consider every possible
subterm, and extract pairs of: (1) the typing context of the subterm (hereafter a hole) and (2)
lemmas used by the user to construct the subterm. The model can then be trained to predict
(2) from (1). We obtain competitive results for this task.

3 Model

Our key motivation is generalizability; i.e., direct applicability to new data with minimal per-
formance degradation. One can view generalizability as the aggregate of completeness and
appropriate inductive biases. Completeness entails being able to model any new data point in
the domain, regardless of possible distributional shifts, whereas the incorporation of suitable in-
ductive biases is crucial for recognizing and effectively generalizing from the structural patterns
in the training data.

The commonly employed sequential approaches attain (some form of) completeness by tok-
enizing expressions in the domain according to the co-occurrence frequencies of their constituent
substrings. In doing so, however, they provide the model with the wrong inductive biases. The
grammar underlying formal objects is not just any string grammar, but a precise inductive
system. String-formatted representations obfuscate this structure.

Furthermore, Agda types are dependent, which means that their abstract syntax trees may
often contain references to other types. These references cannot be considered as strings either.
Indeed, shifts in naming conventions, use of libraries that are stylistically distant or targeted
at novel domains, etc. might necessitate the evocation of symbols not present in a trainable
embedding table, collapsing representations into meaningless generics (e.g., multiple different
entries might be made the same due to an excess of [UNK] tokens). A non-nominal resolution
of these complex referencing patterns necessitates an extension of the traditional AST-encoding
approaches. Crucially, we need to able to structurally refer to both locally defined variables
(intra-AST) as well as other scope entries in their entirety (inter-AST).

With the above in mind, we design and implement a system utilizing:

� Structured Attention We employ a tailor-made attention scheme that alters attention
coefficients by adjusting symbol representations (content) according to their relative po-
sitions (structure), where positions are defined in the context of an underlying AST [7].
This allows us to make use of fully-attentive models of sequential computation without
foregoing structural discipline or bottlenecking vectorial computation.

� Nameless Representations of References and Variables A standard name-agnostic
representation for variables are de Bruijn indices Nonetheless, these are not effective for
learning purposes. Indeed, a single index carries no “meaning” of its own, other than
as an address-referencing instruction. To facilitate learning, we take the extra step of
actually resolving the indexing instruction by using a pointer to the node introducing
the referenced variable, represented as a positional reference. Furthermore, iteratively
representing definitions following along their topological sort, we get access to a dynamic
collection of in-context representations without having to use or peak at their names.

The resulting system is truly structure-faithful and name-free. Initial experiments conducted
on the major Agda libraries achieve competitive results with a fraction of the parameter count
and training cost of modern approaches. For further details, we refer the interested reader to
our full paper [8].

2



Learning Structure-Aware Representations of Dependent Types Kogkalidis, Melkonian, Bernardy

References

[1] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. HOList:
An environment for machine learning of higher order logic theorem proving. In Interna-
tional Conference on Machine Learning, pages 454–463. PMLR, 2019.
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A transformer-based approach to premise selection. arXiv preprint arXiv:2303.04488, 2023.

[11] Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(03):2967–2974, Apr. 2020. doi: 10.1609/aaai.v34i03.
5689. URL https://ojs.aaai.org/index.php/AAAI/article/view/5689.

[12] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving. arXiv preprint arXiv:2009.03393, 2020.

[13] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and
Ilya Sutskever. Formal mathematics statement curriculum learning. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.

net/forum?id=-P7G-8dmSh4.

3

https://arxiv.org/abs/2401.02949
https://ojs.aaai.org/index.php/AAAI/article/view/5689
https://openreview.net/forum?id=-P7G-8dmSh4
https://openreview.net/forum?id=-P7G-8dmSh4


Learning Structure-Aware Representations of Dependent Types Kogkalidis, Melkonian, Bernardy

[14] Josef Urban and Jan Jakub̊uv. First neural conjecturing datasets and experiments. In
Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Bertinoro,
Italy, July 26–31, 2020, Proceedings 13, pages 315–323. Springer, 2020.

[15] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem
proving by deep graph embedding. Advances in neural information processing systems, 30,
2017.

[16] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants.
In International Conference on Machine Learning, pages 6984–6994. PMLR, 2019.

[17] Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu,
Saad Godil, Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with
retrieval-augmented language models. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023.

4


	Introduction
	Data
	Model

