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Abstract

We present an approach for lowering the upper bound of R(5,5) by decomposing the
problem into an extremely large number of configurations, each solvable by a SAT solver.
To reduce the total number of cases, we apply generalization techniques that allow many
configurations to be handled in a single SAT instance.

Introduction The Ramsey number R(b,r) is the smallest integer n such that every red-blue
coloring of the edges of the complete graph K, on n vertices contains either a blue-clique of
size b or a red-clique of size r. A colored graph (of size k) that does not contain any blue-clique
of size b and any red-clique of size r is called an R(b,r)-graph (R(b,r, k)-graph) and is said to
respect the R(b,r)-constraint. It has been known since 1989 that an R(5,5,42)-graph exists
and giving the lower bound R(5,5) > 43 [4]. R(4,5) = 25 [6], which was proved in 1995, implies
that R(5,5) < 50. This was improved to R(5,5) < 48 [1] in 2017 and further to R(5,5) < 46 [2]
in 2024.

In this work, we outline a strategy aimed at lowering the upper bound further. The approach
assumes the existence of an R(5,5,43)-graph, chooses a vertex in K43 of blue-degree d (referred
to as a splitting vertex) and decomposes the graph into its blue neighbors (an R(4, 5, d)-graph)
and its red neighbors (an R(5,4,42 — d)-graph). A direct approach is to exhaustively generate
all possible R(4,5,d)-subgraphs and all R(5,4,42 — d)-graphs. A gluing problem consists of
finding a color assignment for the transverse edges and respects the R(5,5)-constraint. If all
gluing problems constructed from all pairs of subgraphs are unsatisfiable, then R(5,5) < 43.
Further details on constructions and experimental results are provided in Appendix A.

Construction of a Gluing Problem There are an estimated 2.91 x 10! [6] R(4, 5)-graphs
and a complete list of such graphs has yet to be compiled. While our approach does not require
full enumeration, it is helpful to describe the problem as if we were generating all R(4, 5)-graphs.
A natural strategy is to decompose each candidate graph into the blue neighbors of a vertex,
forming an R(3,5)-graph, and the red neighbors, forming an R(4, 4)-graph. Since both R(3,5)-
graphs and R(4,4)-graphs have been fully enumerated, all R(4,5)-graphs (and, by symmetry,
all R(5,4)-graphs) can, in principle, be constructed by gluing such pairs while ensuring the
R(4,5)-constraint is satisfied.

To illustrate this, we construct a specific gluing problem Py, consisting of a vertex of blue-
degree 20, an R(4,5,20)-graph Go and an R(5,4,22)-graph Hy. Gg is built by picking a split-
ting vertex of blue-degree 9, a random R(3,5,9)-graph for its blue neighbors and a random
R(4,4,10)-graph for its red neighbors. Similarly, Hy is built from a splitting vertex of blue-
degree 10, a random R(4,4, 10)-graph for its blue neighbors and a random R(5, 3, 11)-graph for
its red neighbors. A possible assignment for the transverse edges in Gg and Hj is obtained by
calling the SAT solver CaDiCal [3].

Number of Gluing Problems The degree d of the primary splitting vertex can be restricted
based on the following observations. In any red-blue coloring of a complete graph with an odd
number of vertices, at least one vertex must have an even blue-degree. Therefore, we can assume
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that d is even without loss of generality. Due to the symmetry between red and blue, we may
assume without loss of generality that the blue-degree is less than the red-degree. The blue-
degree d and red-degree 42 — d must both be strictly less than 25, since R(4,5) = R(5,4) = 25.
Combining these constraints, we are left with two cases: d = 18 and d = 20. Based on the
estimated number of R(4,5)-graphs given in [6], the number of gluing problems is 1.73 x 10
for d = 18 and 1.62 x 103* for d = 20.

Proof of a Gluing Problem The SAT solver CaDiCal is not able to prove that Py is un-
satisfiable within a day. We therefore decompose Py into 622746 subproblems by considering
separately each of the way the secondary splitting vertex in GGy can be connected to vertices in
Hj while respecting the R(5,5)-constraint. Over the course of 200 CPU-days, CaDiCalL success-
fully proved that all subproblems are unsatisfiable, thus proving that P, is itself unsatisfiable.
Assuming this instance is representative, applying the same exhaustive method to all 1.62x 1034
gluing problems would require approximately 200 x 1.62 x 103* CPU-days, which is an entirely
impractical amount.

Generalization of a Gluing Subproblem The number of gluing problems is too large
to be solved individually. Therefore, we introduce a generalization procedure that enables
solving many subproblems simultaneously. The idea is to start with a specific subproblem
Qo (a partially colored graph) and progressively forget the color of the edges in Q¢ to form
more abstract versions Q1,Qs,...,Q,. Each abstracted problem may cover subproblems from
multiple gluing problems, allowing proofs to be reused. To decide which edge to generalize (i.e.,
make uncolored), we compute a score: the ratio of solving time (measured with CaDiCaL) to
the number of subproblems covered (estimated by ganak [7] or a custom probabilistic model
counter for problems that are too hard for ganak). We select the edge with the lowest score,
which maximizes the number of subproblems solved per second. This greedy process continues
until proving unsatisfiability becomes too slow (i.e., exceeds a time threshold).

In one experiment, starting from an easy subproblem Qg of Py, solvable in 0.14 seconds, we
were able to abstract 298 out of 403 edges before the runtime exceeded 20 seconds. This solves
an estimated 2.4 x 1027 non-isomorphic subproblems. This estimate was obtained by dividing
the total number of subproblems covered by Q29s (approximately 4.4 x 10%6) by the average
number of subproblems per isomorphic class (approximately 1.8 x 10%).

Covering Procedure From the remaining colored edges of the strongest abstraction @,
we create a blocking clause preventing us from revisiting any covered subproblems in future
generalizations. The generalization procedure is then restarted from a different subproblem
not covered by our previous blocking clauses. This subproblem may potentially come from
a different gluing problem. This process repeats until all subproblems across all are covered.
Completing this process would constitute a proof that R(5,5) < 43.

If we optimistically assume that our generalization experiment is representative, then the
number of generalizations needed would be (1.62 x 103%) x 622746 <+ (2.4 x 1027) = 4.2 x 102
times to complete the proof. Given the current cost of 10 CPU-hours per generalization, the
proof could be completed in 42 trillion CPU-hours.

Verification We aim to verify the correctness of our algorithms using an interactive theorem
prover, following the same methodology that led to the formal proof of R(4,5) = 25 [5].

Resources The code for our project is available at https://github.com/barakeel/ramsey.


https://github.com/barakeel/ramsey
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A Appendix

A.1 Initial Split

R(5,5,43)

0.
@ R(5,4,42 — d)

Figure 1: Decomposition of an R(5,5,43)-graph into a splitting vertex, its blue neighbors and
its red neighbors.

A.2 Statistics for the Proof of F,

Time (seconds) 0-0.25 0.25-0.5 0.5-1.0 1-2 24 4-8 816 16-32 32-64 64-128  128-
# Subproblems 137357 144628 59406 82570 53228 40028 33985 16678 18781 12946 23139

Table 1: Number of subproblems of P, solved in a given amount of time. The longest time
taken by CaDiCal to solve a subproblem is 8 hours.

A.3 Adjacency Matrices for the Different Stages

The adjacency matrices below represent partial graphs (problems). The unassigned edges are
left blank, the blue edges are represented by o, the red edges are represented by -.
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Figure 2: The splitting vertex (0) and beginning of the construction of the graph Gy and Hy

by gluing blue neighbors and red neighbors of secondary splitting vertices
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Figure 3: The three splitting vertices (0,1,21) and completed construction of Go and Hy. Prov-

ing that this partial matrix cannot be completed is the problem F.
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Figure 4: Adjacency matrix of the selected subproblem @Qq. It is an instantiation of Py. There,

the edges connecting the secondary splitting vertex 1 to Hy have been assigned.
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Figure 5: Adjacency matrix (Q2g9 obtained by applying 289 abstraction steps to Qg
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