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1 Introduction

The problem of estimating the probability of a conjecture to be a theorem has been mentioned
in the literature as early as 1954 by George Pélya [6]. More formal treatments have appeared
since then such as the work of Scott Garrabrant, Abram Demski et al on Uniform Coher-
ence [1,3] and Logical Induction [2], seemingly the most advanced treatments on the subject
to date. To the best of our knowledge though, no one has considered using a probabilistic
logic incorporating inductive and abductive reasoning such as NAL [7] or PLN [5], which we
believe is particularly well suited to this problem. In this paper we show how to estimate the
probability of a proposition to be a theorem given all available evidence by using Probabilistic
Logic Networks (PLN). We then explain how such estimation can be used as guiding heuristics
for Automated Theorem Proving.

The idea we develop here is to define a ternary predicate holding the relationship between
theory, proof and theorem, and to probabilistically reason about it. Given its semi-decidable
nature we cannot hope in practice to establish whether such relationship holds for any argument.
We can however hope to estimate, with various degrees of confidence, the probability that it
may or may not hold given the available evidence. For instance, some pieces of evidence in
favor of

Vx P(x)

could be that P holds for some ay,...,a,. Ideally every bit of information that relates to the
conjecture should be taken into account to estimate its probability of being a theorem. Although
only a rigorous proof, or a contradiction, can establish certainty. Moreover, such ability can
then be used as a guide to discover proofs by prioritizing the search over lemmas that are
themselves more likely to be provable. The same idea can be applied recursively on these
lemmas till it bottoms out by reaching the axioms, or by exhibiting a contradiction, thereby
hopefully reducing the amount of necessary backtracking.

2 Relating Theory, Proof and Proposition in PLN

From a type theoretic perspective, propositions are types, theories are collections of typing
relationships and proofs are terms inhabiting types. Let us define a ternary predicate O,
representing such relationship

©® : Theory X Proof X Proposition — Bool

where Theory is a set of collections of typing relationships encoding the axioms and inference
rules of each theory, Proof is a set of terms representing proofs, and Proposition is a set of
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types representing propositions. The content of ® can in principle be characterized in PLN
by formalizing the rewriting laws of such type system. For instance modus ponens could be
formulated as’

5]

O(T, f,a - b) AO(T, x,a) = O(T, f(x),b)

where T', f, x, a and b are universally quantified variables, — is an implication at the object
level, £ which can be read as measured by and relates a PLN statement, here an implication
at the logical level =, to a truth value, here <1,1>, forming a PLN judgment capturing the
uncertainty of the statement. The first number of the truth value represents the strength and
the second number represents the confidence over that strength, although underneath, a truth
value is a second order distribution. In the example above the judgment is certain because both
the strength and the confidence are 1. The full judgment can be read as: in theory T, if f is
a proof of a — b, and x is a proof of a, then with certainty f(x) is a proof of b. In addition,
PLN allows to reason about uncertain knowledge via induction and abduction. Given a corpus
of examples (and counter examples) of ©, induction can be used to gather statistics about the
probability of some propositions meeting some criteria to be theorems. Abduction provides a
similar mechanism by considering properties over ® instead of examples.

Given a theory I' and a proposition C, the question what is the probability that there exists
a proof p of C in T? can be formulated in PLN by the query

<1,1>

dp 6T, p,C) & $tv

where $tv is a hole corresponding to the truth value to be filled by PLN. The way this truth
value is calculated may involve both crisp logical reasoning and statistical reasoning, the latter
including recognizing patterns relating theories, proofs and propositions.

3 Estimating Provability as Guiding Heuristic

The ability to estimate the probability of finding a proof of a proposition could be used as
guiding heuristic. For instance one may break up the task of finding a proof of C into two
competing paths each composed of two subtasks:

e A-path: find a proof of A — C, find a proof of A, then use modus ponens to prove C.
e B-path: find a proof of B — C, find a proof of B, then use modus ponens to prove C.
To decide whether to take the A-path or the B-path, one may formulate the PLN queries

3pa OT, pa,A) Adpac O, pac,A = C) £ $tvy

Ipp O(T, pg, B) A Ipgc O(T, ppc, B — C) = $tvg

let PLN reason till both $tv, and $tvg get filled with truth values of decent confidences and
pick up the path with the best truth value. If we want to compare the modus ponens rule to
other inference rules, we can even go further by existentially quantifying the premise as well,
resulting in the PLN query

Ja (3pq O(T, pg, @) A Apac O(T, pac,a — C)) = $tv,

If it gets selected the search will progressively instantiate a into actual premises, breaking up
the query into more specific queries resembling the ones corresponding to the A-path and the
B-path and so on. An early prototype of the ideas described in this paper can be found in [4].

INote that due to PLN being in a state of rework, the syntax used here is provisional.
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