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1 Formal Math as Grammar-Compressed Proof Terms

The very essence of formalized mathematics may be characterized as starting from a few axioms
and using a few inference rules to derive theorems. A verifier can then check a given derivation
and a theorem prover can search for a derivation of a given conjectured theorem. However,
derivations can be very large and also, even for limited size, the number of possible derivations
is very large. Thus, “something else” is assumed that allows to distinguish theorems of interest
and to guide proof search. Forms of this “something else” are often sought outside of the
axiomatic approach. In automated proving for example with heuristics, notions of redundancy
and saturation, or coupling with machine learning. In interactive proving for example by
assigning names to distinguished formulas. Here we consider a particular form of this “something
else”, which is already inherent in variations of the axiomatic approach: compression of proof
structures. It provides a perspective on the structuring of proofs into manageable lemmas that
is not driven by formulas but rather by proof structures considered as compressed trees. Lemma
formulas come second, determined by substructures of the compression.

Metamath [15, 13, 14], a successful computer language for archiving, verifying, and studying
mathematical proofs can be seen in this way. It continues a thread from Lukasiewicz and Tarski
who investigate axiomatizations of propositional logics within a first-order meta-level framework
[11], via Meredith, who refines this with his condensed detachment by the implicit use of most
general unifiers instead of explicit substitutions and a view on proof structures as terms with a
DAG representation [16, 17, 6, 12, 21, 27].

Metamath proofs are in essence grammar-compressions [9, 8] of proof terms built from just
two primitive inference rules: condensed detachment (modus ponens with unification) and
condensed generalization (quantifier introduction). A non-cyclic tree grammar with a single
production for each nonterminal provides a compressed representation of a set of proof terms.
Repeated patterns, such as the two occurrences of g(h(-)) in f(g(h(a)), g(h(b))) can be factored by
non-terminals with parameters, such as in the grammar {Start — f(p(a), p(b)), p(V) — g(h(V))}.
The case with no parameter represents the factoring of a subtree as in a DAG.

With this form of proof term compression we can model the way in which mathematical
knowledge is structured in Metamath. A grammar production corresponds to the proof of a
theorem. The theorem formula is, from the first-order perspective (the “meta-level” at which
mathematics is expressed in Metamath) a definite clause. The length of its body is the number
of parameters of the corresponding production. The production’s nonterminal serves as theorem
name, and as function symbol in other proof terms where the theorem is used as lemma. Given a
grammar, axiom clauses and a proof term built from nonterminals, axiom symbols and variables,
a most general clause proven by the proof term can be uniquely determined.

The largest Metamath database is the Metamath Proof Explorer, also called set.mm, with
about 44,000 theorems on various mathematical topics, developed with Zermelo-Fraenkel set
theory. Such a knowledge base now appears as a single tree grammar with a production for
each theorem. The expanded value of a nonterminal is a large tree whose inner nodes represent
applications of the two primitive inference rules, and whose leaves represent instances of axioms.
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2 Theses

Our work starts from the observation that condensed detachment (as related to structure-
generating theorem proving [27]), Metamath proof structures [15] and grammar-based tree
compression [8] combine in a natural way, with proof terms as central notion. This leads to
a framework of striking simplicity, where a single representation mechanism covers proofs by
automated systems as well as proofs by the interactive system, Metamath. Moreover, different
abstraction levels appear as representations of the same structures, in the same representation
mechanism, formally related through lossless compression. In general, this framework opens
fresh perspectives on many issues that arise in applying automated first-order theorem proving
on mathematical problems and in the integration of automated with interactive theorem proving
accompanied by mathematical knowledge bases. Specifically, we investigate the following theses.

1. Compression of proof structures is a suitable approach to lemma synthesis. Effects on
proof structure provide indicators for the quality and importance of a lemma.

2. For lemma synthesis not only compression “from scratch”, i.e., of a fully expanded proof
structure, can be useful, but also further compression applied to already compressed
structures. These may stem from a human-made knowledge base, where lemma synthesis
could suggest improvements on the structuring, and from automated systems, where, e.g.,
a structuring that is better suited for humans is sought.

3. The structuring of mathematical knowledge by human experts, exemplified with Metamath
knowledge bases, is by itself worth systematic investigation for understanding human
reasoning. One may ask how far the human structuring can be modeled with mechanical
compression methods and which other systematic principles are behind it that are not
justified by a compressing effect.

4. A mathematical knowledge base with proofs in the same format as that of automated
systems is helpful in advancing automated theorem proving. Proofs from the knowledge
base provide examples of the ultimately desired results of proof search. “Learning” from
these, i.e., detecting and investigating their features and transferring the resulting insights
into proof search seems necessary for substantial progress in automated theorem proving.

3 Towards Addressing the Theses

Establishing our theses in full would be an ambitious long-term project. Nevertheless we
have developed a formal and implemented framework and used it to perform first exemplary
experiments towards verifying them.

Formal Framework. We developed a “proof theory” that meets the requirements arising
from our approach. It is a generalization of condensed detachment that is capable of representing
Metamath proofs and also the introduction of new lemmas with compression techniques. Proofs
are considered as explicit objects, proof terms. The “proves” relation between proof terms
and formulas is specified by means of an inference system. A central concept is the notion
of most general theorem (MGT), the unique most general formula proven by a proof term,
which is determined via unification. Condensed detachment is generalized to proof terms with
parameters. The MGT is then a definite clause with a body atom for each parameter. Observed
subtleties concerning parameters with multiple occurrences (nonlinear proof terms) are addressed.
Proof grammars provide a grammar-compressed representation of proof terms. Each grammar
production represents the proof of a lemma. MGTSs corresponding to lemmas can be determined
directly from the grammars, without need for decompression. We also take into account that
Metamath allows theorems to be user-specified strict instances of their proof’s MGT.
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Implemented System. We extended CD Tools, which is written in SWI-Prolog [30], embed-
ded in PIE [23, 24], and centered around experimenting with condensed detachment [25, 26, 18]
with support for grammar-based tree compression and a Metamath interface. The central tree
compression method is TreeRePair [9], which we implemented in SWI-Prolog operating on a
DAG representation of the term to be compressed. Through SWI-Prolog’s internal structure
sharing it handles terms of gigantic size, as long as their DAG size is moderate. As an alternative
to grammars, CD Tools also supports a combinator [20, 3] representation of compressed proof
terms, with mappings to and from the grammar representation. The Metamath interface allows
to read-in Metamath databases such as set.mm and convert formulas as well as proofs into Prolog
terms. For proofs, various formats are supported, including the format supported generally for
condensed detachment proofs by CD Tools. To generate new inputs for Metamath, formulas can
be printed in Metamath syntax and proofs can be supplemented by inferred “syntactic” proof
parts that meet specified disjoint variable restrictions [13].!

First Exemplary Experiments. We started with inspecting the proof grammar for the
first 60% of set.mm, its best curated part, which excludes deprecated material and user-specific
contributions. We considered structural properties, including properties from the literature on
grammar compression, as well as formula-related properties. Among the findings are that 28%
of the productions are nonlinear, 12% of the productions increase the grammar size, 10% have
no effect on the grammar size, for 8.4% the theorem statement is a strict instance of the MGT,
and 3.9% of the theorem statements are redundant due to subsumption. We then applied a
similar analysis to a small subset of set.mm that allowed to compare the human structuring
of set.mm with a machine structuring “from scratch”, obtained with a compression workflow
involving TreeRePair, nonlinear compression and further techniques. Its result is 30% larger
than the human compression, suggesting that our machine compression techniques can still be
improved. An indicator for the usefulness of the lemmas found by machine is that for about
one third of them their formula appears as a theorem in set.mm. In a further experiment, we
apply the machine compression workflow to the given structuring of set.mm, broken into 18
large chunks, one for each mathematical topic. This machine compression applied on top of an
existing human structuring achieved a further compression of 4-30%.

Related Works and Fresh Perspectives on Specific Issues. Variations of grammar-based
proof compression are also considered in [22, 5], however applied to formulas involved in proofs,
in contrast to proof structures. For structuring of proofs by automated systems, in [19, 4] it was
observed that structural properties of proofs (in contrast to formula properties) provide the
most useful indicators to identify distinguished lemmas. Some key properties described in [19, 4]
turn out as DAG specializations of generic key properties of grammar compressions. In [7], an
investigation of premise selection, it is observed that relevant lemmas are not only found among
named theorems of a knowledge base corpus, but also among lemmas used implicitly in proofs.
Moreover, lemmas can be identified at the level of “atomic” kernel inferences, leading to big
data, and at the higher level of combinations of “tactics”. As outlined above, the approach
based on grammar-compressed proof structures integrates these levels, both representing the
proof in full detail, and both using the same representation mechanism. Our implemented
tools so far provide elements of a hammer system [1]. In contrast to the hammer system for
Metamath described in [2], we operate on a direct formula translation, with the same result
as the translation of [2] via higher-order logic. In our system, proof translation from a given
grammar representation would not involve a size blowup as described for resolution proofs in [2].

1 Syntactic” proof parts are those that are only displayed by metamath.exe with the /all options. While
optionally available in our Metamath interface, in the proof terms considered by us for condensed detachment
and compression these are also omitted.
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Further Information

The CD Tools system and code for additional experiments are available from http://cs.
christophwernhard.com/cdtools/. An earlier stage of this work was presented at AITP
2024 [28]. For a more comprehensive presentation we refer to the recent report [29].
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