Towards Lightweight and LLM-Free Semantic Search for mathlib4

Isaac (Rucheng) Li
University of Pittsburgh

Abstract

Finding the right theorem in mathlib4 (a library for the Lean 4 proof assistant) can be
surprisingly hard: everyday mathematical phrases (e.g., “a product is zero if and only if one
factor is zero” or “a * b = 0 iff a = 0 or b = 0”) rarely match the precise formal theorem names
(e.g., mul_eq-zero). Recent semantic search engines either rely on large embedding models,
raising latency and deployment costs, or adopt lightweight embedding models that can struggle
with formula-heavy queries. We present a high-accuracy, fast, lightweight semantic search engine
that can run entirely locally on a laptop-class CPU.

A public demo and reproducible notebooks are available at https://github.com/IsaaclLi74/
Lightweight-and-LLM-Free-Semantic-Search-for-mathlib4.

1 Introduction

Mathematical libraries in proof assistants have grown so large that keyword-based lookup often fails
even for experienced users.

Before large language models, several content-based systems already supported searching formal
theorems (e.g., Whelp [I]). These helped, but they often struggled with informal queries. This fact
is a hurdle for newcomers who want to use proof assistants to learn mathematics.

More recent semantic search engines use embedding models [2] to embed a detailed informal
paraphrase for each formal theorem as a search anchor, and at query time embed the user’s text into
the same vector space, ranking candidates by cosine similarity. For mathlib4 [3], LeanSearch [4]
builds a paired formal-informal corpus and optionally performs LLM-based query augmentation
that rewrites the user’s input into a more detailed description before dense retrieval. Although
it performs well on reported benchmarks, it relies on the E5-Mistral-7B [5, [6] embedding model,
which is difficult to deploy on resource-constrained devices (e.g., laptops). Another advanced engine,
LeanExplore [7], adopts a similar embedding-based approach but uses a lightweight embedding
model bge-base-en-v1.5 [§] and a hybrid ranker over multiple text sources (primary declaration’s
name, docstring, informal descriptions...), supporting both local and hosted API modes.

While LeanExplore is lightweight, this design has trade-offs: in our tests, it struggles to align
formula-heavy queries with the correct formal theorem. An obvious workaround is to invoke online
LLM-based query augmentation to rewrite formula-heavy inputs into detailed natural-language
queries. However, this adds query-time latency and cost, undermining the goal of lightweight local
deployment. LeanSearch handles formula-heavy queries better but depends on a larger model
(E5-Mistral-7B) and exhibits some variable-naming bias (e.g., searching a + -b = a - b returns
correct results, whereasm + -i = m - i does not). Motivated by these limitations, we introduce
a straightforward, laptop-runnable mathlib4 search engine that supports formula-based queries,
reduces naming bias, and achieves high retrieval accuracy without any need for online LLM calls at
query time.
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2 Method

We first describe how a user query is processed at runtime, and then explain how the search engine
is constructed step by step.

At query time, we begin by normalizing the input query. Mathematical symbols are standardized
(e.g., replacing “<=" with “<”), and spaces are inserted around symbols so that tokens are clearly
separated. The normalized query is then embedded using Qwen3-Embedding-0.6B [9] with a fine-
tuned LoRA [10] adapter to produce a vector representation. Using this vector, we retrieve the
50 nearest pre-embedded search anchors by cosine similarity from a prebuilt FAISS HNSW [IT], [12]
(Hierarchical Navigable Small World graphs) index. Finally, we deduplicate by formal theorem
names and return the top-10 results with their names and statements.

2.1 Data preparation

From a mathlib4 snapshot (Lean 4.20.1), we extract 179,194 theorems with LeanDojo [13]. For
each theorem, we use DeepSeek-Chat [14] API to produce three detailed queries — ql natural-
language, g2 formula-style, 3 mixed — while wrapping every variable with & (e.g., &a&). We then
normalize the statement, insert spaces around every variable and mathematical symbol so they
tokenize separately, and mask variables left-to-right as §, %, ... (e.g., &a& — §).

2.2 Training set synthesis

To embed queries of the same theorem closer together while separating those of different theo-
rems, we fine-tune the lightweight base embedding model on query pairs with the loss function
MultipleNegativesRankingLoss [I5] (MNRL).

Index the theorems by ¢ = 1,..., N with N = 179,194. For each theorem ¢ with detailed queries
(qgi), qéi), qéi)), we form three positive pairs (qgi)7 qg)), (qéi), qi(f)), and (qz(,f), qii)). Concatenating these
across all theorems in a fixed order—first all (g1, g2), then all (g2, ¢3), and finally all (g3, g1)—yvields
3N = 537,582 positive pairs. For a batch of B pairs {(a;, p;)}2.; (where the first element is treated
as the anchor and the second as its positive), the MNRL objective with cosine similarity s(-,-) and
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Because LLMs have finite context, semantically similar theorems may yield identical queries.
Under MNRL, this creates false negatives if such duplicates appear in the same batch. To avoid
this, we group duplicate query theorems and enforce a one-per-batch rule, ensuring that no two
members of the same group occur together.

To further increase training hardness while avoiding noise, we construct three theorem sets by
reordering the full theorem collection according to different batching strategies. These sets are later
used to form the training sets as described above. The batching strategies are detailed below:

e Low-clustered: near-uniform random ordering of the full theorem set.

e Medium-clustered: formal theorem names sorted so theorems from the same area co-occur,
increasing within-batch similarity.

¢ High-clustered: cluster-based batches via k-means on base model embeddings of formal
theorem statements, yielding batches of closely related patterns.



2.3 Model adaptation and base index construction

We adopt Qwen3-Embedding-0.6B as the base embedding model and fine-tune it with a lightweight
LoRA adapter over four epochs: one Low-clustered, two Medium-clustered, and one High-
clustered as above. We then use the adapted embedding model to embed all detailed queries, and
index them with FAISS HNSW to form the vector—to—theorem mapping of the base search engine.
We choose HNSW because it is a state-of-the-art approximate nearest neighbor (ANN) method that
significantly accelerates vector search while maintaining high recall. Similar ANN indexing is
adopted in LeanSearch and LeanExplore.

2.4 Vague query harvesting and index finalization

For each theorem, we use DeepSeek-Chat to generate five vague queries (under the same normaliza-
tion as detailed queries). We run each query against the base search engine. If the ground-truth
theorem is missing from the top-10 results, we log the tuple (query, target formal statement, top-10
results) for adjudication. We then prompt DeepSeek-Chat to adjudicate these candidates, discarding
queries that are unintelligible or too underspecified to retrieve the target theorem. Also, for highly
generic patterns that match many declarations (e.g., § + & = & + § for many add_comm theorems),
if the top-10 results are reasonable, we drop those rarely used variants (e.g., UInt64.add _comm).
The accepted vague queries are then merged with the original detailed queries to form the final set
of search anchors. We re-embed all search anchors and build the final FATSS HNSW index, yielding
the final search engine.

3 Results

We evaluate on 2,400 queries derived from 300 formal theorems. Since LeanSearch is built on
Lean 4.16.0, LeanExplore on Lean 4.19.0, and our model on Lean 4.20.1, we select a set of commonly
used and important mathematical theorems as the evaluation anchors to ensure that all search
engines can retrieve them. To preclude any leakage from training anchors, the 2,400 evaluation
queries were independently regenerated from the original formal theorems using DeepSeek-Chat,
rather than reusing any search anchors constructed during indexing. The queries are divided into four
groups (detailed_nl, detailed_formula, short_nl, short_formula), each with two paraphrase variants
(pos 0 and pos 1). For formula-style queries, paraphrases mainly consist of renaming variables
to different alphabetic symbols (e.g., a — m) without altering the mathematical content. The
evaluation metric is the percentage of queries for which the correct formal theorem appears among
the top-10 results (additionally, we also count as correct cases where the namespace is dropped in
results; e.g., dvd mul left is a correct answer for Nat.dvd mul left).

Group (pos) Ours LeanExplore LeanSearch LeanSearch (aug.)
detailed_nl (0) 98.00% 80.67% 79.67% —
detailed nl (1) 97.67% 71.33% 77.33% —
detailed _formula (0)  95.33% 69.67% 78.67% —
detailed formula (1)  94.33% 30.67% 68.67% —
short_nl (0) 94.33% 71.00% 78.00% —
short_nl (1) 86.67% 58.33% 71.00% —
short_formula (0) 89.67% 64.33% 73.00% —
short_formula (1) 84.67% 26.00% 55.33% —
Overall 92.58% 59.00% 72.711% —

Note: “aug.” refers to LeanSearch with online LLM-based query augmentation enabled. Results for this
setting have not yet been evaluated.



Efficiency. All timings are measured in Google Colab using the demo. End-to-end per-query
latency is typically 0.5—1.0s, depending on input length, with average RAM around 7.2 GB.
Session CPU: Intel(R) Xeon(R) CPU @ 2.20GHz; vCPUs: 2; RAM: 12.7 GB.

4 Limitations

Although our results demonstrate strong performance, the current system still has several limitations.

Incomplete theorem extraction. Our theorem set (179,194 theorems from Lean 4.20.1) is
incomplete, smaller than the LeanSearch theorem set by about 9,000 theorems. This is easy to
address; we deferred it because our initial goal was to validate the overall design. The current set
suffices for that purpose.

Over-separation in training. Our fine-tuning strategy draws queries of the same theorem
closer together in the embedding space while pushing those of different theorems apart. From results,
this strategy works out well. However, this contrastive setup neglects connections across distinct
theorems. For example, Nat.prime def 1t (if a number smaller than a prime p divides p, it must
be 1) and Nat.prime def_1t’ (there are no divisors of p in the interval (1,p)) both express almost
the same fact about primes, yet one is treated as a negative in the Medium-clustered dataset.
After multiple rounds of clustered training, this may lead to overfitting. An obvious solution would
be to construct an independent training set disjoint from the query set. However, we did not pursue
this option due to funding constraints.

Dependence on anchor richness. The retrieval quality of our engine is closely tied to the
richness of its search anchors. Abstract inputs such as “axioms of natural numbers” fail to retrieve
the Peano axioms, because the generated anchors do not encode such conceptual-to-formal links.
Larger embedding models may better capture these higher-level abstractions, but at the expense
of higher computational cost. Feedback from the Lean Zulip community reported similar issues.
For instance, the query “subgroup transitivity” failed to return le_trans. This reflects a broader
limitation of embedding-based search engines: during search anchor construction, the LLM does not
fully capture that general theorems such as le_trans support a wide range of applications. While
improved prompting or the use of more advanced online LLMs (e.g., ChatGPT or Gemini) could
potentially solve this problem, our choice of DeepSeek-Chat was primarily motivated by funding
constraints.

Potential evaluation bias. Although we did not reuse search anchors when constructing the
test set, generating both anchors and queries with the same LLM (DeepSeek-Chat) may introduce
stylistic/distributional bias and inflate performance. This problem can be solved by evaluating on
test sets generated by other LLMs and by human-written queries.

5 Future Work

In future work, we plan to progressively address the limitations discussed above. Although our
current prototype is built for Lean, the proposed design is lightweight and generic, and could be
adapted to other proof assistants with minimal changes. The system is also easy to maintain:
when libraries such as mathlib4 update, one only needs to add the updated formal theorems and
related new search anchors. Furthermore, when a user query fails to retrieve relevant results, it
can be converted into vague queries and periodically incorporated through the same vague query
harvesting and indez finalization procedure described in Section 2.4. In this way, the search engine
can continuously improve over time while preserving its low-cost and locally deployable nature.
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