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A complete graph of size 3
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A blue-red coloring of a complete graph size 3
avoiding blue 3-cliques and red 3-cliques
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A complete graph of size 4
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A blue-red coloring of a complete graph of size 4
avoiding blue 3-cliques and red 3-cliques
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A complete graph of size 5
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A blue-red coloring of a complete graph of size 5
avoiding blue 3-cliques and red 3-cliques
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A complete graph of size 6
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Definition of the Ramsey Number

The Ramsey number R(n;m) is the smallest k such that:
� it is not possible to find a coloring of the complete graph of size k which

avoids blue n-cliques and red m-cliques.

Example: R(3;3) = 6

The set of graphs (modulo isomorphism) of size k which avoid blue n-cliques
and red m-cliques is noted R(n;m; k).
A graph in R(n;m; k) will be called a R(n;m; k)-graph.

Example: R(3;3;5) 6= ; and R(3;3;6) = ;

We rely on the nauty algorithm to normalize graphs.

9 / 25



Why prove that R(4,5) = 25?

Is it simple, general, surprising, enlightening, beautiful?

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time
unless human beings can find R(5,5). We could marshal the world’s best
minds and fastest computers, and within a year we could probably calculate
the value. If the aliens demanded R(6,6), however, we would have no choice
but to launch a preemptive attack.” Paul Erdős

How do we find the value of R(5;5) to avoid imminent death?
R(4;5) = 25 is an important lemma.
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Why formally prove that R(4; 5) = 25?

The proof relies on mathematical arguments and a very large computation.
(multiple CPU years at the time)

Both of these parts could have errors/bugs.

With a formal proof, we can be certain that R(4;5) = 25.
(as long as the HOL4 kernel is sound)
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How to prove that R(4,5) = 25?

We will prove that R(4;5;24) 6= ; and that R(4;5;25) = ;.
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R(4; 5; 24) 6= ;

The first person to find a R(4;5;24)-graph is Kalbfleisch in 1965.
The picture shows the verified R(4;5;24)-graph (from McKay’s website).

The verification took 10 minutes by a simple search algorithm.
(algorithms for the maximum clique problem can take less than a millisecond)
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How to prove that R(4; 5; 25) = ;?

� Idea 1: enumerate all R(4;5;25)-graphs
(2(25�24)=2 = 2300 � 1090)

� Idea 2: enumerate all R(4;5;25)-graphs modulo isomorphism
(about 2300=25! � 1065)

� Idea 3: encode blue 4-cliques and red 5-cliques as SAT clauses
� Idea 4: add symmetry-breaking clauses (and parallelism)
� Plan: McKay and Radziszowski proved than R(4;5;25) = ;.

Verify their arguments and replace their gluing algorithm by a SAT solver.
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Plan

Suppose that there exists a R(4;5;25)-graph

v
R(3;5;d) R(4;4;24� d)

R(4;5;25)
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Plan

Pick a vertex v in that R(4;5;25)-graph

v

R(3;5;d) R(4;4;24� d)

R(4;5;25)
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Plan

Consider the blue neighbors of v and the red neighbors of v

v

R(3;5;d) R(4;4;24� d)

R(4;5;25)
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Plan

Prove that the blue neighbors form a R(3;5;d)-graph

v
R(3;5;d)

R(4;4;24� d)

R(4;5;25)
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Plan

Prove that the red neighbors form a R(4;4;24� d)-graph

v
R(3;5;d) R(4;4;24� d)

R(4;5;25)
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Plan

Prove that the vertex v , any R(3;5;d)-graph and any R(4;4;24� d)-graph
can not occur together disjointly in a R(4;5;25)-graph.
These problems are gluing problems.

v
R(3;5;d) R(4;4;24� d)

R(4;5;25)
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7 � d � 13

From R(3;5;14) = ;, we get d � 13.
From R(4;4;18) = ;, we get 24� d � 17 and thus 7 � d .

v
R(3;5;d) R(4;4;24� d)

R(4;5;25)
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In a R(4; 5; 25)-graph,
there exists a vertex of even degree

The sum of the degree of the vertices of a graph is even.
(it is two times the number of edges)

In a graph with 25 vertices, if all vertices have odd degree then
the sum of the degree of the vertices of that graph is odd.

Therefore, there exists a vertex with even degree.

Choose for v a vertex of even degree d .
Thus, we now have three cases d = 8, d = 10 or d = 12.
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Estimated time for solving gluing problems

d jR(3;5;d)j jR(4;4;24� d)j |problems| CPU-days

8 179 2 358 0.055
10 313 130816 40945408 8373
12 12 1449166 17389992 7702

How do we estimate the expected gluing time for each d?
� Sample 200 random problems
� Measure average time taken by the HOL4 interface to MiniSat
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Strategy for reducing the gluing time

Avoid duplicating work by regrouping similar problems

Regroup similar graphs into generalizations

Lead to fewer problems but more difficult ones
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Regrouping similar graphs into generalizations

R(3;5;3) = f , , g

stops

R�(3;5;3) = f g

Heuristics:
� minimize overlap between generalizations
� preserves large monochromatic cliques (small clauses)

In the original proof:
� vertices were removed instead of edges.
� the heuristic was based on the number of blue(or red) edges.
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Improvements in estimated time

Graphs Generalizations

d 3,5,d 4,4,24-d problems days 3,5,d 4,4,24-d problems days

8 179 2 358 0.055 27 2 54 0.018
10 313 130816 40945408 8373 43 11752 505336 572
12 12 1449166 17389992 7702 12 26845 322140 374

Formal proof that generalizations cover all graphs:
� an internal first-order solver for graphs
� isomorphism by renaming: vertices are represented by variables
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Adjacency matrix of a gluing problem

A vertex, a R�(3;5;10)-generalization and a R�(4;4;14)-generalization.
Prove that it is not possible to color the black edges and the gray edges.
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Encoding a gluing problem into SAT

Create one propositional variable Ea;b for each edge in the graph.
Ea;b is true if the edge (a;b) is blue.
Ea;b is false if the edge (a;b) is red.

No blue 4-clique. For each subset S of size 4, create the clause:
_

a;b2S^a<b

:Ea;b

No red 5-clique. For each subset T of size 5, create the clause:
_

a;b2T^a<b

Ea;b

Add the unit clause Ea;b if an edge (a;b) is blue in the matrix.
Add the unit clause :Ea;b if an edge (a;b) is red in the matrix.

Unsatisfiable = cannot color the remaining edges (black and gray).
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Formally proving the gluing problems

We call the HOL4 interface to MiniSat on each gluing problem.
I would like to thank Weber and Amjad for developing this interface.
The interface works by calling MiniSat which produces a proof trace that is
replayed in HOL4.

This produced 827,530 gluing lemmas in approximately 1,440 CPU-days.
(higher than the estimated 946 CPU-days)
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Conclusion

We have formally proven that R(4;5) = 25 in the HOL4 theorem prover.

In summary, R(4;5;25) = ; can be deduced by contradiction from:
� the existence of a vertex of degree d 2 f8;10;12g,
� Enumeration of R(3;5;d) and R()4;4;24� d) graphs.
� generalizations forming a cover,
� gluing lemmas.

Is there a simpler proof of R(4;5) = 25 ?
Could our approach help to prove that R(5;5) = 43?
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