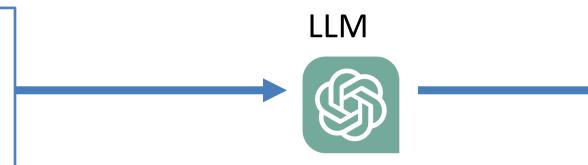
Automated Theorem Proving by HyperTree Proof Search with Retrieval-Augmented Tactic Generator

<u>Sho Sonoda (RIKEN)</u>, Naoto Onda (OMRON SINIC X), Kei Tsukamoto (The University of Tokyo), Fumiya Uchiyama (The University of Tokyo), Akiyoshi Sannai (Kyoto University), Wataru Kumagai (OMRON SINIC X)

- Large Language Models (LLMs) do best at generating languages ever
- So, we want to develop an AI system for automated ML research

Input: "Estimate the generalization error of the following network $f(x; \theta) = W\sigma(Vx)''$



- But, LLMs are known to hallucinate, and have limited math abilities
- Possible solutions are
 - Prompt engineering --- in natural language
 - Using external computers --- in formal language (this study)
- In this study, we develop an LLM that perform Automated Theorem **Proving (ATP) by interacting with Proof Assistant (Lean)**

Output:

 $\sqrt{\frac{C}{n}}$ $"Risk[f] \le EmpRisk[f] +$

with high probability where c is ..."

Sequence Diagram of interactive proof by LLM and Proof Assistant Eg. Markov inequality $P\{x \mid g(x) - f(x) \ge \varepsilon\} \le \frac{1}{\varepsilon} E[g(X) - f(X)]$

Input (theorem)

theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : $\alpha \rightarrow \mathbb{R} \ge 0\infty$ } (hle : f $\le m[\mu]$ g) (hg : AEMeasurable g μ) (ε : $\mathbb{R} \ge 0\infty$) : $\int^{-} a$, f a $\partial \mu + \varepsilon * \mu \{ x \mid f x + \varepsilon \le g x \} \le \int^{-} a$, g a $\partial \mu := by$

Sequential Output (proof)

```
rcases exists_measurable_le_lintegral_eq \mu f with \langle \varphi, h\varphi m, h\varphi h_e, h\varphi eq \rangle

calc

\int x, f x \partial \mu + \varepsilon * \mu \{ x \mid f x + \varepsilon \leq g x \} = \int x, \varphi x \partial \mu + \varepsilon * \mu \{ x \mid f x + \varepsilon \leq g x \} := by

rw [h\varphi eq]

\leq \int x, \varphi x \partial \mu + \varepsilon * \mu \{ x \mid \varphi x + \varepsilon \leq g x \} := by

gcongr

exact fun x => (add_le_add_right (h\varphi he_)_).trans

= \int x, \varphi x + indicator \{ x \mid \varphi x + \varepsilon \leq g x \} (fun_e => \varepsilon) x \partial \mu := by

rw [lintegral_add_left h\phim, lintegral_indicator_o, setLIntegral_const]

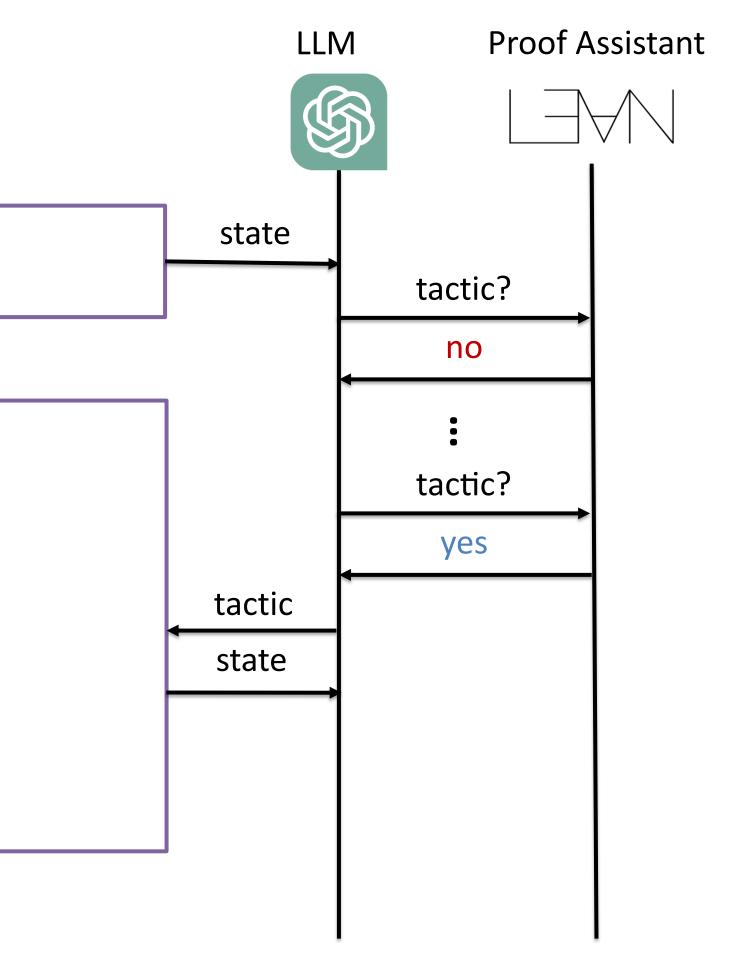
exact measurableSet_le (h\phim.nullMeasurable.measurable'.add_const_) hg.nullMeasurable

\leq \int x, g x \partial \mu := lintegral_mono_ae (hle.mono fun x hx_1 => ?_)

simp only [indicator_apply]; split_ifs with hx_2

exacts [hx_2, (add_zero_).trans_le <| (h\phim_e x).trans hx_1]
```

- This proof is written by human (obtained from Mathlib4)
- This "proof" is a sequence of tactics



- Task:
 - Theorem Proving by LLM in Lean
- Why Lean?
 - The Lean math library, Mathlib, is well-developed and rapidly developing
 - supports practical math objects such as
 - concentration inequalities, and stochastic processes on \mathbb{R}^n
- Major Technologies:
 - Hyper-Tree Proof Search (HTPS)
 - Monte-Carlo Tree Search (MCTS)
 - + Reinforcement Learning of networks
 - Premise Selection by Retrieval-Augmented Generator (RAG)
 - Vector search with machine-learned high-dim vector-embedding

https://github.com/auto-res/HTPS-RAG Hyper-Tree Proof Search (HTPS): AlphaZero-like formulation for Theorem Proving

	AlphaZero	HTPS	
Task	Shogi, Go,	Theorem Proving	
State	Board state	Subgoals, or Proof States	
Action	Putting stones	Tactics, or Proof Steps	
Policy NW	suggests where to put the stone	suggests tactics	
Critic NW	estimates the probability which player wins	estimates the provability of the given state	

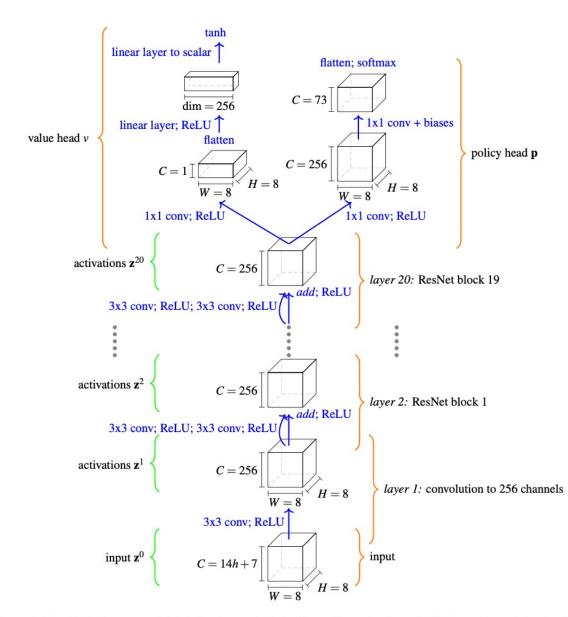


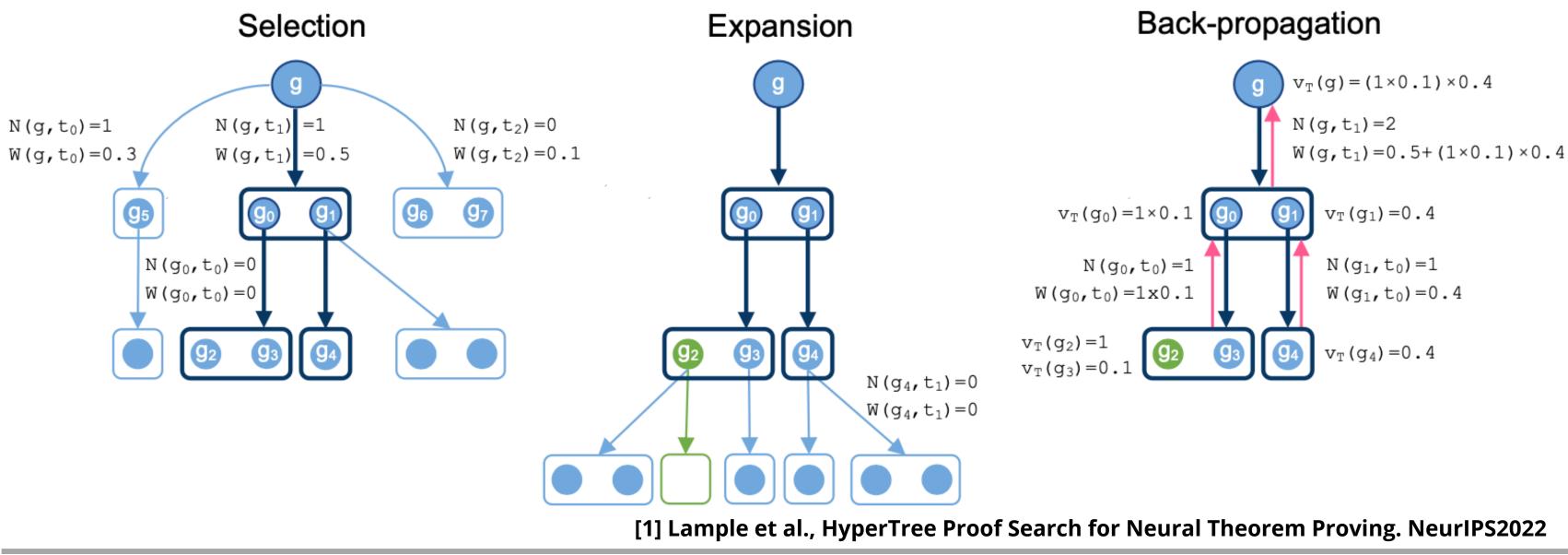
Figure 1. The AlphaZero network. Each 3×3 convolution indicates the application of 256 filters of kernel size 3×3 with stride 1. A ResNet block contains two rectified batch-normalized convolutional layers with a skip connection. In the input z^0 , a history length of h = 8 plies is used, encoding the current board position and those of the seven preceding plies. The input is a $8 \times 8 \times 119$ -dimensional tensor.

Figure from McGrath et al. pnas 119(47) 2022

[1] Lample et al., HyperTree Proof Search for Neural Theorem Proving. NeurIPS2022

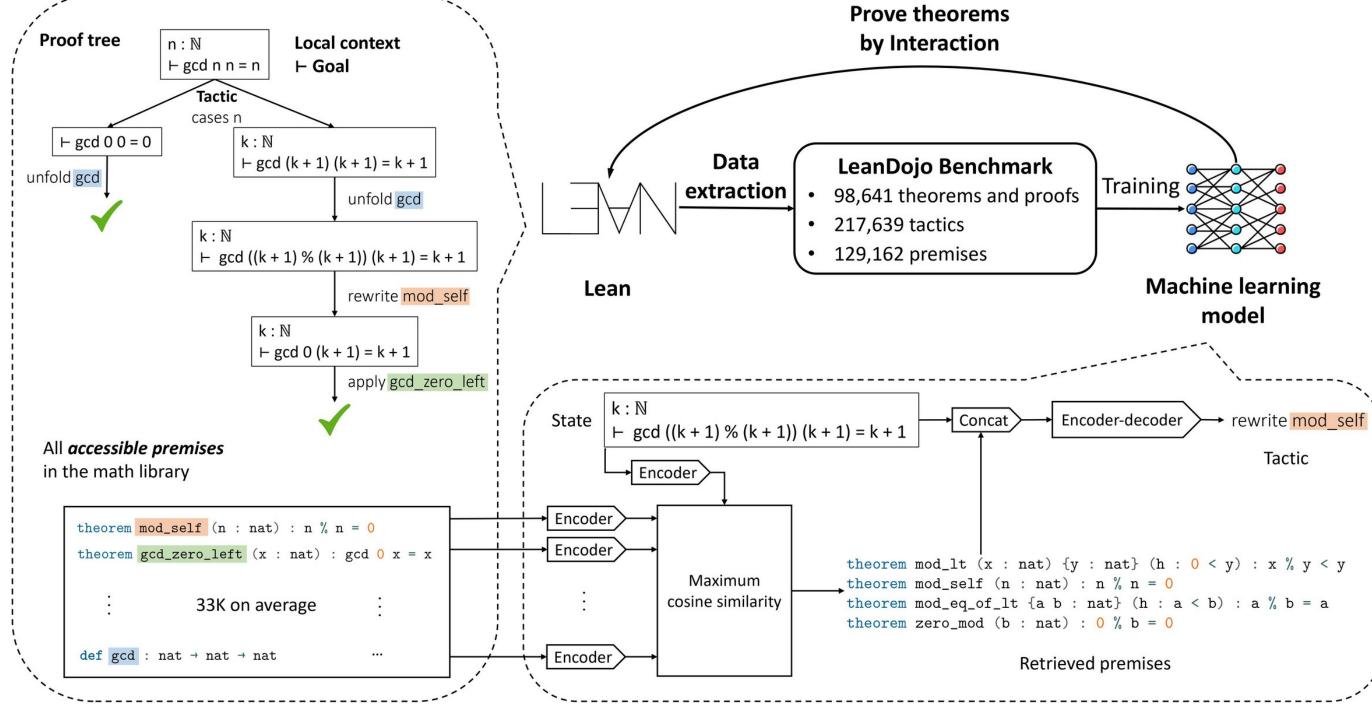
Monte-Carlo Tree Search (MCTS) --- HTPS by Lample et al. (NeurIPS2022)

- Repeat Select-Expand-Backpropagate to grow proof tree
 - Select a leaf node by running the policy NW to reach the leaf
 - Expand the leaf by applying the tactics suggested by the policy NW
 - Back-propagate the node values according to critic NW
- We re-implement this as it is not open-sourced

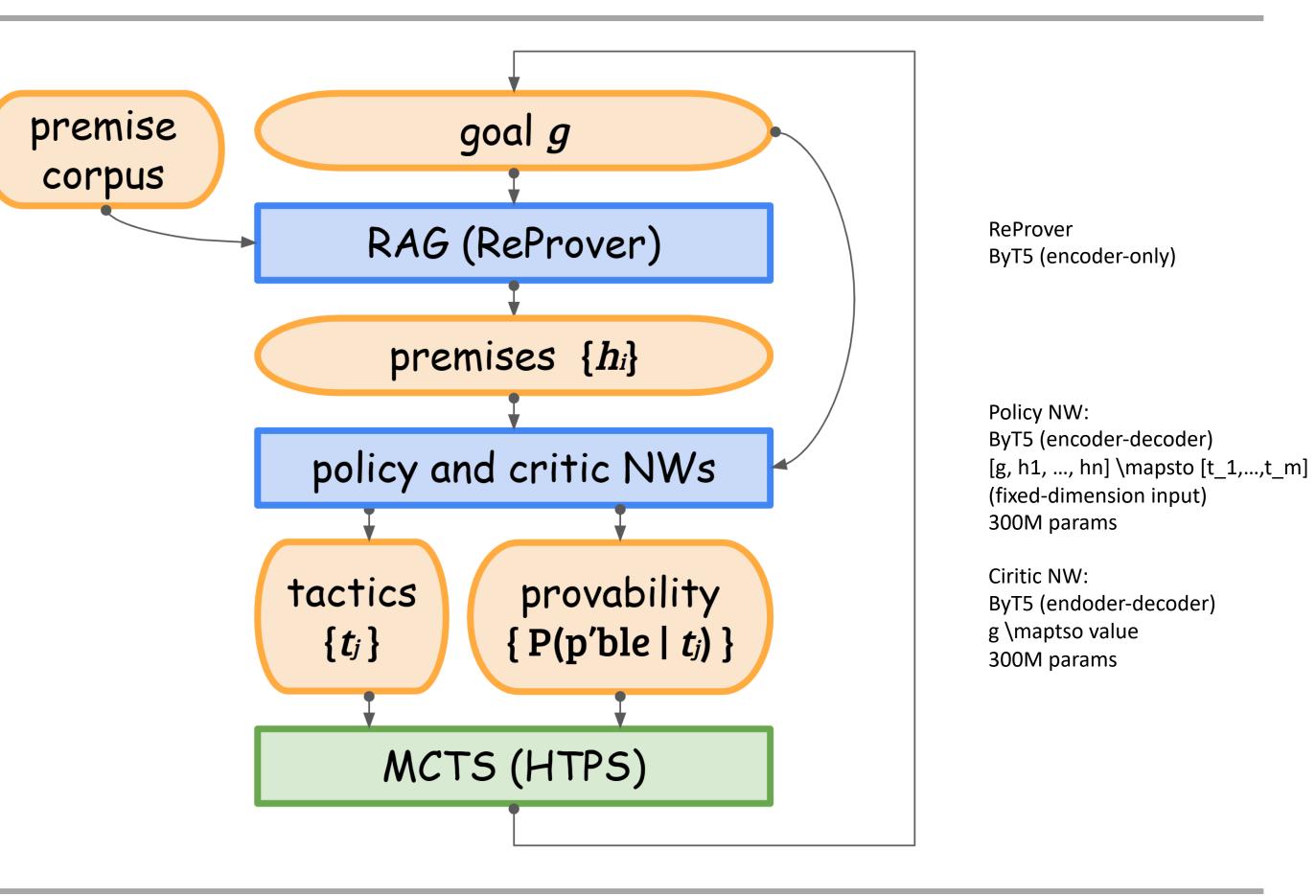


https://github.com/auto-res/HTPS-RAG

- vector search with machine-learned high-dim vector-embedding
- We use ReProver (from LeanDojo) by Yang et al. (NeurIPS2023dt)



[2] Yang et al., LeanDojo: Theorem Proving with Retrieval-Augmented Language Models, NeurIPS2023 dataset track



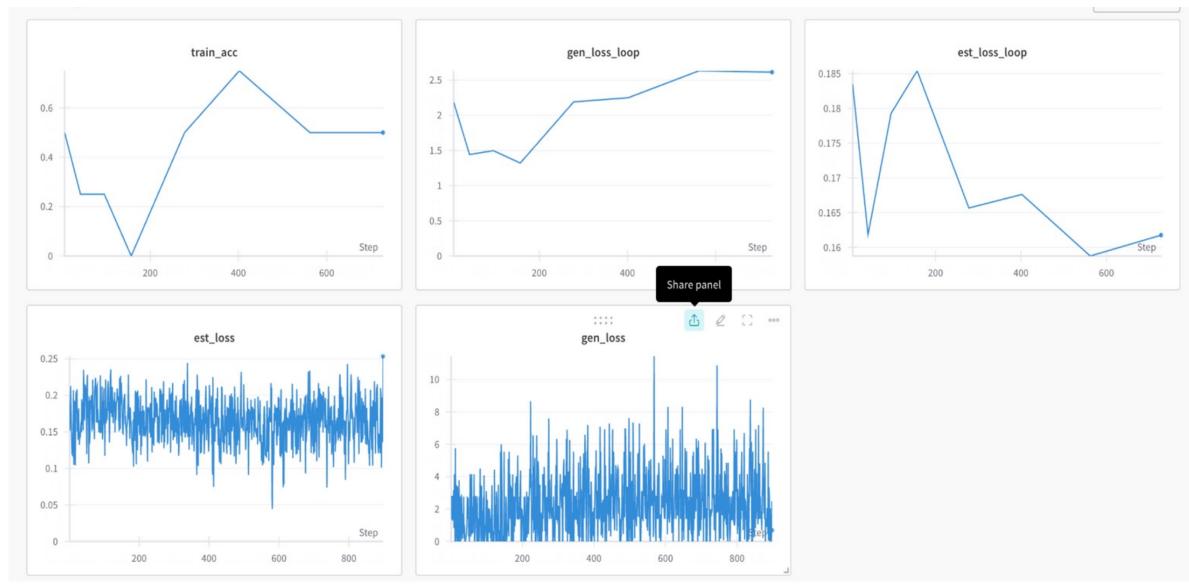
- ITP: Lean3
- NVIDIA A100-SXM4-80GB for 24 hours
 - Timeout for each run: 150 seconds
 - The number of premise selection: 20
- Training Dataset: Mathlib3
- Benchmark Datasets: MiniF2F and ProofNet
 - MiniF2F is high-school level
 - ProofNet is undergrad level
- Our model marked
 - 26.2% on miniF2F by pass@1
 - 10.0% on ProofNet by pass@1

Score Boards

model	ITP	miniF2F	ProofNet
HTPS (2022)	Lean3	41.0%(pass@64)	_
LEGO Prover. (2023)	Isabelle	47.1%(pass@100)	_
ReProver (2023)	Lean3	26.5%	13.8%
Deep-Seek Prover V1.5 (2024.08.15)	Lean4	63.5% (SOTA)	23.5% (SOTA)
HTPS + RAG (proposed)	Lean3	26.2%(pass@1)	10.0%(pass@1)

After a 24-hours of training,

- The training loss for the critic model has decreased,
- but the training accuracy did not significantly improved
- Suggesting that we need a more machine power

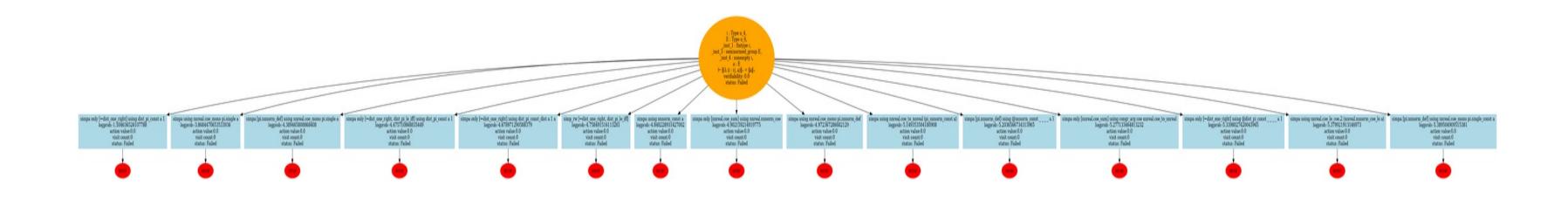



```
    theorem exercise_3_2_7 {F : Type*} [field F] {G : Type*} [field G]

(\phi : F \rightarrow +* G) : injective \phi := begin
by_cases h\phi : function.injective \phi
intros x y h
exact hφ h
by_contra H
apply h\phi
contrapose! h\phi
rw injective_iff_map_eq_zero φ
contrapose! hp
obtain \langle x, hx1, hx2 \rangle := h\phi
exact \varphi.injective
end
```

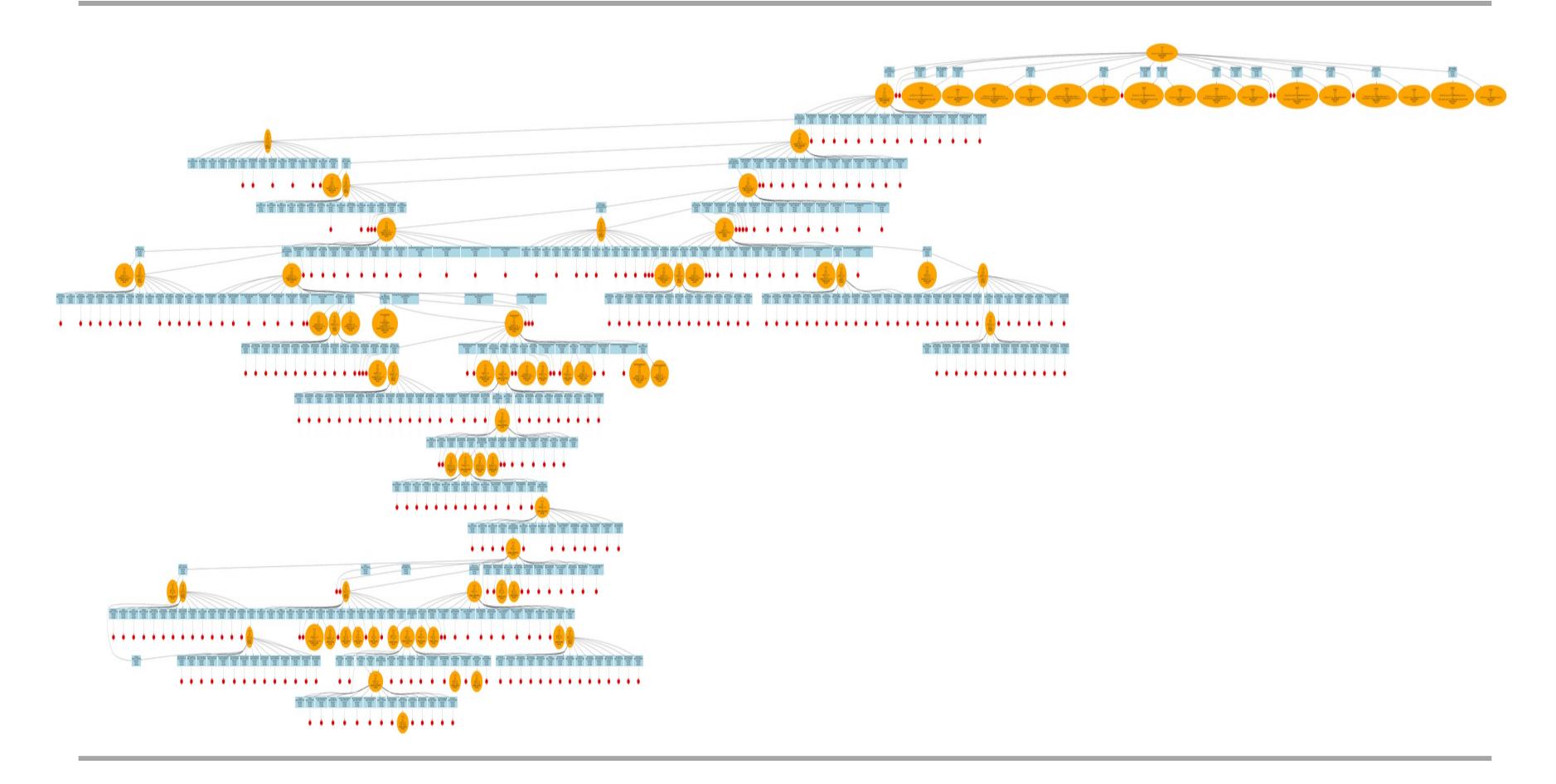

An Example of Failure: failed early (about 30%)

ι : Type u_4, E : Type u_6, _inst_1 : fintype ι, _inst_3 : seminormed_group E, _inst_4 : nonempty ι, a : E $\vdash \|(\lambda (i:\iota), a)\|_{+} = \|a\|_{+}$ verifiability: 0.0 status: Failed

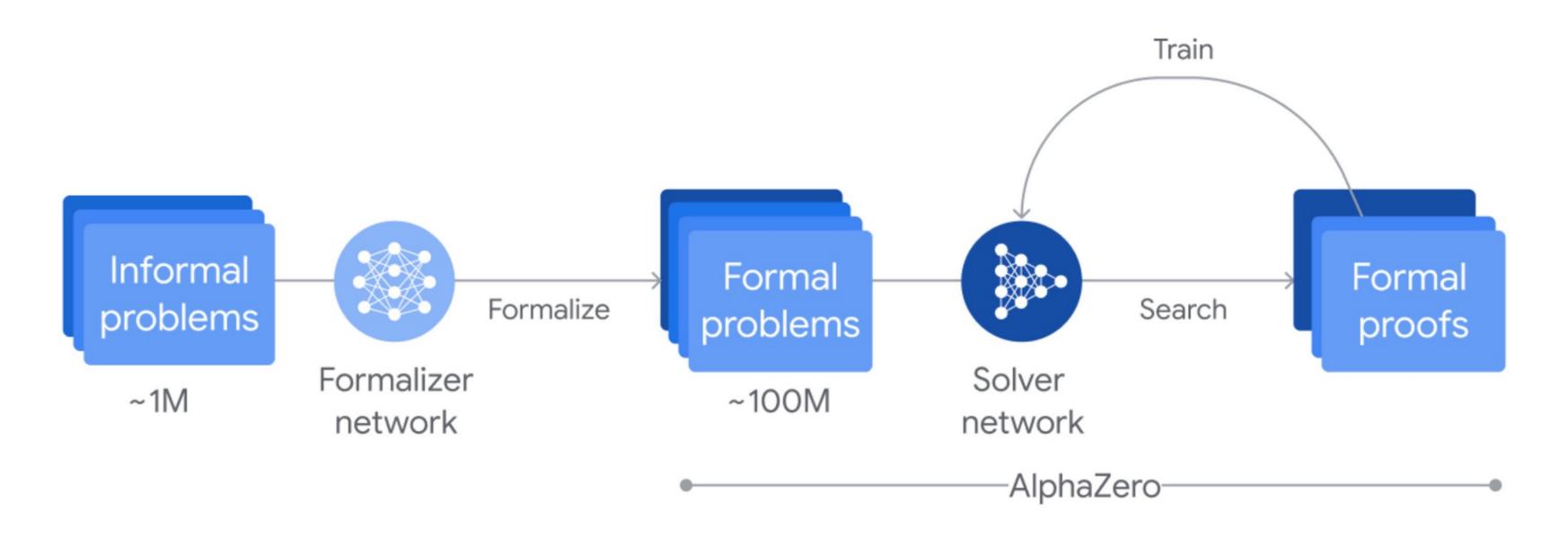


All suggested tactics failed to apply

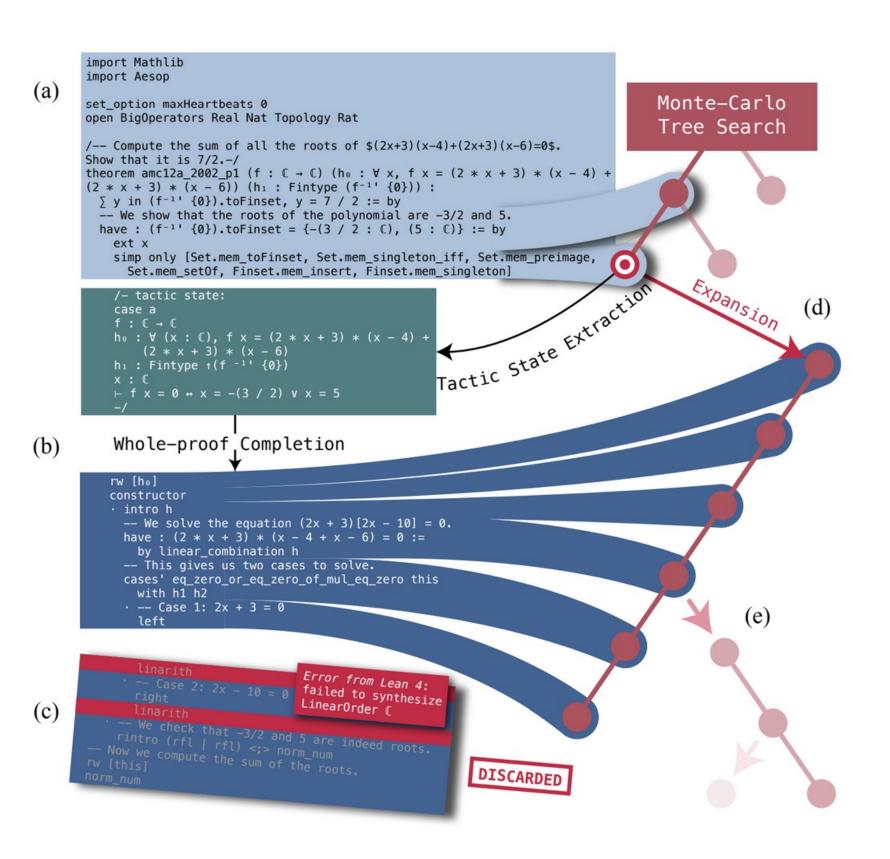
Another Example of Failure: search timed out (about 70%)



- Augment the dataset by using the Formalizer Network
- "Our teams are continuing to explore multiple AI approaches for advancing mathematical reasoning and plan to release more technical details on AlphaProof soon."



- Using
 - Lean
 - Reinforcement Learning
 - Monte-Carlo Tree Search
- Additionally,
 - Chain of Thought reasoning as a guide of proof search
 - Use Lean's feedback
 - Generates a tentative whole proof at each step for computational efficiency



- We need more computational resources and datasets
- E.g., we may increase the dataset by
 - auto-formalization
 - theorem generation
- Toward our final goal:
 - Auto-formalizer (on going)
 - How to verify the equivalence???
 - Manual dataset preparation (on going)
 - Particularly Hoeffding, Azuma-Hoeffding, Rademacher, Massart, ...
 - Self-improvement by competitive game
 - How?

Thank you for your attention