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Motivations

• Large Language Models (LLMs) do best at generating languages ever
• So, we want to develop an AI system for automated ML research

• But, LLMs are known to hallucinate, and have limited math abilities

• Possible solutions are
• Prompt engineering --- in natural language
• Using external computers --- in formal language (this study)

• In this study, we develop an LLM that perform Automated Theorem 
Proving (ATP) by interacting with Proof Assistant (Lean)

Input:
“Estimate the generalization error 
of the following network
𝑓 𝑥; θ = 𝑊𝜎(𝑉𝑥)” 

Output:

“𝑅𝑖𝑠𝑘 𝑓 ≤ 𝐸𝑚𝑝𝑅𝑖𝑠𝑘 𝑓 + !
" 

with high probability where c is …” 

LLM
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rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
  calc
    ∫⁻ x, f x ∂μ + ε * μ { x | f x + ε ≤ g x } = ∫⁻ x, φ x ∂μ + ε * μ { x | f x + ε ≤ g x } := by
      rw [hφ_eq]
    _ ≤ ∫⁻ x, φ x ∂μ + ε * μ { x | φ x + ε ≤ g x } := by
      gcongr
      exact fun x => (add_le_add_right (hφ_le _) _).trans
    _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by
      rw [lintegral_add_left hφm, lintegral_indicator₀, setLIntegral_const]
      exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable
    _ ≤ ∫⁻ x, g x ∂μ := lintegral_mono_ae (hle.mono fun x hx₁ => ?_)
  simp only [indicator_apply]; split_ifs with hx₂
  exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]

LLM

tactic?

Input (theorem)

…

no

tac4c?

yes

tactic

Proof Assistant

theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
    (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :

∫⁻ a, f a ∂μ + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ := by

Sequential Output (proof)

state

state

Sequence Diagram of interac1ve proof by LLM and Proof Assistant
Eg. Markov inequality 𝑃 𝑥	 𝑔 𝑥 − 𝑓(𝑥) ≥ 𝜀} ≤ !

"
𝐸[𝑔 𝑋 − 𝑓(𝑋)]

• This proof is written by human (obtained from Mathlib4)
• This “proof” is a sequence of tactics
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Design Policy

• Task:
• Theorem Proving by LLM in Lean

• Why Lean?
• The Lean math library, Mathlib, is well-developed and rapidly developing
• supports practical math objects such as 
• concentration inequalities, and stochastic processes on ℝ4

• Major Technologies:
• Hyper-Tree Proof Search (HTPS)
• Monte-Carlo Tree Search (MCTS)
• + Reinforcement Learning of networks

• Premise Selection by Retrieval-Augmented Generator (RAG)
• Vector search with machine-learned high-dim vector-embedding
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AlphaZero HTPS

Task Shogi, Go, ... Theorem Proving

State Board state
Subgoals, 

or Proof States

Action Putting stones Tactics, or Proof Steps

Policy NW
suggests where to 

put the stone
suggests tactics

Critic NW
estimates the 

probability which 
player wins

estimates the 
provability 

of the given state

Hyper-Tree Proof Search (HTPS): AlphaZero-like formulation for Theorem Proving

Figure from McGrath et al. pnas 119(47) 2022

[1] Lample et al., HyperTree Proof Search for Neural Theorem Proving. NeurIPS2022
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Monte-Carlo Tree Search (MCTS) --- HTPS by Lample et al. (NeurIPS2022)

[1] Lample et al., HyperTree Proof Search for Neural Theorem Proving. NeurIPS2022

• Repeat Select-Expand-Backpropagate to grow proof tree
• Select a leaf node by running the policy NW to reach the leaf
• Expand the leaf by applying the tactics suggested by the policy NW
• Back-propagate the node values according to critic NW

• We re-implement this as it is not open-sourced
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Premise Selection by Retrieval-Augmented Generator (RAG)

• = vector search with machine-learned high-dim vector-embedding
• We use ReProver (from LeanDojo) by Yang et al. (NeurIPS2023dt)

[2] Yang et al., LeanDojo: Theorem Proving with Retrieval-Augmented Language Models, NeurIPS2023 dataset track
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Total Network Architecture
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ReProver
ByT5 (encoder-only)

Policy NW:
ByT5 (encoder-decoder)
[g, h1, …, hn] \mapsto [t_1,…,t_m]
(fixed-dimension input)
300M params

Ciritic NW:
ByT5 (endoder-decoder)
g \maptso value
300M params



Experimental Details and Results

• ITP: Lean3
• NVIDIA A100-SXM4-80GB for 24 hours
• Timeout for each run: 150 seconds
• The number of premise selection: 20

• Training Dataset: Mathlib3
• Benchmark Datasets: MiniF2F and ProofNet
• MiniF2F is high-school level
• ProofNet is undergrad level

• Our model marked
• 26.2% on miniF2F by pass@1
• 10.0% on ProofNet by pass@1

https://github.com/auto-res/HTPS-RAG



model ITP miniF2F ProofNet

HTPS (2022) Lean3 41.0%(pass@64) -

LEGO Prover. (2023) Isabelle 47.1%(pass@100) -

ReProver (2023) Lean3 26.5% 13.8%

Deep-Seek Prover 
V1.5 (2024.08.15)

Lean4 63.5% (SOTA) 23.5% (SOTA)

HTPS + RAG
(proposed)

Lean3 26.2%(pass@1) 10.0%(pass@1)

Score Boards
h"ps://github.com/auto-res/HTPS-RAG



Experimental Results

After a 24-hours of training,
- The training loss for the critic model has decreased,
- but the training accuracy did not significantly improved
- Suggesting that we need a more machine power
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An Example of Success: Injectivity of homomorphism of fields

• theorem exercise_3_2_7 {F : Type*} [field F] {G : Type*} [field G]
 (φ : F →+* G) : injective φ := begin
by_cases hφ : function.injective φ
intros x y h
exact hφ h
by_contra H
apply hφ
contrapose! hφ
rw injective_iff_map_eq_zero φ
contrapose! hφ
obtain ⟨x, hx1, hx2⟩ := hφ
exact φ.injective
end
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An Example of Failure:  failed early (about 30%)

All suggested tactics failed to apply
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Another Example of Failure:  search timed out (about 70%)
https://github.com/auto-res/HTPS-RAG



Latest Models: AlphaProof (Jul 25, 2024)

• Augment the dataset by using the Formalizer Network
• “Our teams are continuing to explore multiple AI approaches for advancing 

mathematical reasoning and plan to release more technical details on AlphaProof 
soon.”
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Latest Models: Deep-Seek Prover V1.5 (Aug 15, 2024)

• Using
• Lean
• Reinforcement Learning
• Monte-Carlo Tree Search

• Additionally,
• Chain of Thought reasoning as a guide 

of proof search
• Use Lean’s feedback
• Generates a tentative whole proof at 

each step for computational efficiency
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Conclusion/Limitation/Future Works

• We need more computational resources and datasets

• E.g., we may increase the dataset by
• auto-formalization
• theorem generation

• Toward our final goal:
• Auto-formalizer (on going)
• How to verify the equivalence???

• Manual dataset preparation (on going)
• Particularly Hoeffding, Azuma-Hoeffding, Rademacher, Massart, …

• Self-improvement by competitive game
• How?
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Thank you for your attention


