
Automated Theorem Proving by HyperTree Proof Search
with Retrieval-Augmented Tactic Generator

Sho Sonoda (RIKEN), Naoto Onda (OMRON SINIC X), Kei Tsukamoto (The University of Tokyo),
Fumiya Uchiyama (The University of Tokyo), Akiyoshi Sannai (Kyoto University),

Wataru Kumagai (OMRON SINIC X)

h"ps://github.com/auto-res/HTPS-RAG

Motivations

• Large Language Models (LLMs) do best at generating languages ever
• So, we want to develop an AI system for automated ML research

• But, LLMs are known to hallucinate, and have limited math abilities

• Possible solutions are
• Prompt engineering --- in natural language
• Using external computers --- in formal language (this study)

• In this study, we develop an LLM that perform Automated Theorem
Proving (ATP) by interacting with Proof Assistant (Lean)

Input:
“Estimate the generalization error
of the following network
𝑓 𝑥; θ = 𝑊𝜎(𝑉𝑥)”

Output:

“𝑅𝑖𝑠𝑘 𝑓 ≤ 𝐸𝑚𝑝𝑅𝑖𝑠𝑘 𝑓 + !
"

with high probability where c is …”

LLM

https://github.com/auto-res/HTPS-RAG

rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
 calc
 ∫⁻ x, f x ∂μ + ε * μ { x | f x + ε ≤ g x } = ∫⁻ x, φ x ∂μ + ε * μ { x | f x + ε ≤ g x } := by
 rw [hφ_eq]
 _ ≤ ∫⁻ x, φ x ∂μ + ε * μ { x | φ x + ε ≤ g x } := by
 gcongr
 exact fun x => (add_le_add_right (hφ_le _) _).trans
 _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by
 rw [lintegral_add_left hφm, lintegral_indicator₀, setLIntegral_const]
 exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable
 _ ≤ ∫⁻ x, g x ∂μ := lintegral_mono_ae (hle.mono fun x hx₁ => ?_)
 simp only [indicator_apply]; split_ifs with hx₂
 exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]

LLM

tactic?

Input (theorem)

…

no

tac4c?

yes

tactic

Proof Assistant

theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
 (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :

∫⁻ a, f a ∂μ + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ := by

Sequential Output (proof)

state

state

Sequence Diagram of interac1ve proof by LLM and Proof Assistant
Eg. Markov inequality 𝑃 𝑥	 𝑔 𝑥 − 𝑓(𝑥) ≥ 𝜀} ≤ !

"
𝐸[𝑔 𝑋 − 𝑓(𝑋)]

• This proof is written by human (obtained from Mathlib4)
• This “proof” is a sequence of tactics

https://github.com/auto-res/HTPS-RAG

Design Policy

• Task:
• Theorem Proving by LLM in Lean

• Why Lean?
• The Lean math library, Mathlib, is well-developed and rapidly developing
• supports practical math objects such as
• concentration inequalities, and stochastic processes on ℝ4

• Major Technologies:
• Hyper-Tree Proof Search (HTPS)
• Monte-Carlo Tree Search (MCTS)
• + Reinforcement Learning of networks

• Premise Selection by Retrieval-Augmented Generator (RAG)
• Vector search with machine-learned high-dim vector-embedding

https://github.com/auto-res/HTPS-RAG

AlphaZero HTPS

Task Shogi, Go, ... Theorem Proving

State Board state
Subgoals,

or Proof States

Action Putting stones Tactics, or Proof Steps

Policy NW
suggests where to

put the stone
suggests tactics

Critic NW
estimates the

probability which
player wins

estimates the
provability

of the given state

Hyper-Tree Proof Search (HTPS): AlphaZero-like formulation for Theorem Proving

Figure from McGrath et al. pnas 119(47) 2022

[1] Lample et al., HyperTree Proof Search for Neural Theorem Proving. NeurIPS2022

https://github.com/auto-res/HTPS-RAG

Monte-Carlo Tree Search (MCTS) --- HTPS by Lample et al. (NeurIPS2022)

[1] Lample et al., HyperTree Proof Search for Neural Theorem Proving. NeurIPS2022

• Repeat Select-Expand-Backpropagate to grow proof tree
• Select a leaf node by running the policy NW to reach the leaf
• Expand the leaf by applying the tactics suggested by the policy NW
• Back-propagate the node values according to critic NW

• We re-implement this as it is not open-sourced

https://github.com/auto-res/HTPS-RAG

Premise Selection by Retrieval-Augmented Generator (RAG)

• = vector search with machine-learned high-dim vector-embedding
• We use ReProver (from LeanDojo) by Yang et al. (NeurIPS2023dt)

[2] Yang et al., LeanDojo: Theorem Proving with Retrieval-Augmented Language Models, NeurIPS2023 dataset track

https://github.com/auto-res/HTPS-RAG

Total Network Architecture
h"ps://github.com/auto-res/HTPS-RAG

ReProver
ByT5 (encoder-only)

Policy NW:
ByT5 (encoder-decoder)
[g, h1, …, hn] \mapsto [t_1,…,t_m]
(fixed-dimension input)
300M params

Ciritic NW:
ByT5 (endoder-decoder)
g \maptso value
300M params

Experimental Details and Results

• ITP: Lean3
• NVIDIA A100-SXM4-80GB for 24 hours
• Timeout for each run: 150 seconds
• The number of premise selection: 20

• Training Dataset: Mathlib3
• Benchmark Datasets: MiniF2F and ProofNet
• MiniF2F is high-school level
• ProofNet is undergrad level

• Our model marked
• 26.2% on miniF2F by pass@1
• 10.0% on ProofNet by pass@1

https://github.com/auto-res/HTPS-RAG

model ITP miniF2F ProofNet

HTPS (2022) Lean3 41.0%(pass@64) -

LEGO Prover. (2023) Isabelle 47.1%(pass@100) -

ReProver (2023) Lean3 26.5% 13.8%

Deep-Seek Prover
V1.5 (2024.08.15)

Lean4 63.5% (SOTA) 23.5% (SOTA)

HTPS + RAG
(proposed)

Lean3 26.2%(pass@1) 10.0%(pass@1)

Score Boards
h"ps://github.com/auto-res/HTPS-RAG

Experimental Results

After a 24-hours of training,
- The training loss for the critic model has decreased,
- but the training accuracy did not significantly improved
- Suggesting that we need a more machine power

https://github.com/auto-res/HTPS-RAG

An Example of Success: Injectivity of homomorphism of fields

• theorem exercise_3_2_7 {F : Type*} [field F] {G : Type*} [field G]
 (φ : F →+* G) : injective φ := begin
by_cases hφ : function.injective φ
intros x y h
exact hφ h
by_contra H
apply hφ
contrapose! hφ
rw injective_iff_map_eq_zero φ
contrapose! hφ
obtain ⟨x, hx1, hx2⟩ := hφ
exact φ.injective
end

https://github.com/auto-res/HTPS-RAG

An Example of Failure: failed early (about 30%)

All suggested tactics failed to apply

https://github.com/auto-res/HTPS-RAG

Another Example of Failure: search timed out (about 70%)
https://github.com/auto-res/HTPS-RAG

Latest Models: AlphaProof (Jul 25, 2024)

• Augment the dataset by using the Formalizer Network
• “Our teams are continuing to explore multiple AI approaches for advancing

mathematical reasoning and plan to release more technical details on AlphaProof
soon.”

https://github.com/auto-res/HTPS-RAG

Latest Models: Deep-Seek Prover V1.5 (Aug 15, 2024)

• Using
• Lean
• Reinforcement Learning
• Monte-Carlo Tree Search

• Additionally,
• Chain of Thought reasoning as a guide

of proof search
• Use Lean’s feedback
• Generates a tentative whole proof at

each step for computational efficiency

https://github.com/auto-res/HTPS-RAG

Conclusion/Limitation/Future Works

• We need more computational resources and datasets

• E.g., we may increase the dataset by
• auto-formalization
• theorem generation

• Toward our final goal:
• Auto-formalizer (on going)
• How to verify the equivalence???

• Manual dataset preparation (on going)
• Particularly Hoeffding, Azuma-Hoeffding, Rademacher, Massart, …

• Self-improvement by competitive game
• How?

h"ps://github.com/auto-res/HTPS-RAG

Thank you for your attention

