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Neural theorem proving

Use neural networks to:
• Generate proofs in an interactive
proof assistant
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Neural theorem proving | Rapid progress

Rapid progress in methods based on language models:

Figure 1: miniF2F benchmark performance, 2022-2024
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Neural theorem proving | Rapid progress

Figure 2: Generated International Math Olympiad solution in Lean
(DeepSeek Prover-1.5B, Xin et al 2024)
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Neural theorem proving | Lean

Why talk about Lean?

• Increasing interest from the mathematical community
• Increasing interest from the AI community
• For AI research, the choice of proof assistant matters (not ideal!)
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This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Going beyond competition problems
• Going beyond mathematics
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1. Going beyond human data

Language model-based proving:

• Train a model pθ(y|x) on a dataset D = {(x, y)}, e.g.,
• x: proof state
• y: next tactic (next “step”)
• D: extracted from human-written theorems and proofs

• Generate proofs:

Figure 3: Best-first search
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1. Going beyond human data

• Some models are already trained on ≈ all Lean projects!
• E.g., Lean-GitHub [5]: data from 237 Lean 4 repos

• More human-written data will help, but difficult to scale1

1Please don’t stop making more publicly available formal mathematics data!

7



1. Going beyond human data

Open problem I: how do we synthesize useful data?

• Proofs
• Theorems
• Augmentations (formal, informal, ...)
• ...
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1. Going beyond human data

Not a new problem; common methods:

• Statement autoformalization [Wu et al 2022 [4]]

• Informal theorem→ formal theorem

• Expert iteration [Polu et al 2022 [3]]

• Generate proofs with a model, train on successful ones, iterate

Used in several state-of-the-art methods, e.g. DeepSeek-Prover 1.5, AlphaProof
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1. Going beyond human data | Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck
https://arxiv.org/abs/2407.10040
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1. Going beyond human data | Lean-STaR

Can we do better by interleaving informal steps of reasoning? (right)
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1. Going beyond human data | Lean-STaR

Why?

• Plan proof steps
• Diversify search space
• More tokens can give more computational capacity

Data doesn’t exist! We need to synthesize it.
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1. Going beyond human data | Lean-STaR

Lean-STaR (Self-taught reasoner2)

Step 1: generate an informal “thought” with an off-the-shelf
language model retrospectively

• (state, tactic)→ thought

Train an initial model on a dataset of such examples:

• p0θ(thought, tactic|state)

2Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022
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1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model

Figure 4: Best-first search: difficult to score (thought, tactic) candidates
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1. Going beyond human data | Lean-STaR

Step 2: generate proofs with the model

Figure 5: New sampling method
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1. Going beyond human data | Lean-STaR

Step 3: train on the successful proofs, and repeat:3

• Collect (state, thought, tactic) from successful proofs
• Train a new model p1θ(thought, tactic|state)
• Generate proofs
• ...

3I.e. Expert Iteration [Polu et al 2022 [3]]
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1. Going beyond human data | Lean-STaR

• miniF2F [7]: competition problems (AMC, AIME, IMO)
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1. Going beyond human data | Lean-STaR

miniF2F test
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Figure 6: MiniF2F test
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1. Going beyond human data | Lean-STaR

Figure 8: Example generated thoughts and proof from Lean-STaR
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1. Going beyond human data | Lean-STaR

Figure 9: Example generated thoughts and proof from Lean-STaR 20



1. Going beyond human data | Lean-STaR

Figure 10: Increasing the search budget is more effective with thoughts
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This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data: problems, proofs, plans, ...

• Going beyond competition problems
• Going beyond mathematics
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2. Going beyond competition problems

Lots of exciting progress! Some methods can solve IMO problems!

However, not much impact on proving in practice.
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2. Going beyond competition problems

Accessibility gap:

• Some methods are hard to integrate into tools
• Not open-source (AlphaProof, ...)
• Expensive to run (MCTS, ...)

However, there are model-agnostic tools available to plug into!
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2. Going beyond competition problems

Figure 11: https://github.com/cmu-l3/llmlean
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2. Going beyond competition problems

Figure 12: https://github.com/cmu-l3/llmlean
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2. Going beyond competition problems

Figure 13: Example on Polynomial Freiman Rusza Conjecture project
https://github.com/cmu-l3/llmlean
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2. Going beyond competition problems

Benchmarking gap:

• Benchmark improvements (e.g., on competition problems) do
not measure improvement in real-world proving conditions
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2. Going beyond competition problems

Figure 14: Interview questions ̸= real code development
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2. Going beyond competition problems

Figure 15: Competition problems ̸= real proof development
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2. Going beyond competition problems

Real-world proving is context-dependent:

• (context, theorem)→ proof
• Context: repository of code, new definitions, auxiliary lemmas
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2. Going beyond competition problems

Generalization to new contexts is studied in other proof assistants,
e.g., online setting4, testing on held-out repositories5

Not a focus for state-of-the-art models/benchmarks in Lean!

4Tactician [2], Graph2Tac [1]
5CoqGym [6]
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2. Going beyond competition problems | miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts
Jiewen Hu, Thomas Zhu, Sean Welleck
https://www.arxiv.org/abs/2408.03350
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2. Going beyond competition problems | miniCTX

miniCTX:

Collect (context, theorem) examples from real Lean projects:6

• “Future mathlib”: theorems added after a time cutoff
• Recent projects: PFR, PrimeNumberTheorem
• Textbook exercises: How To Prove It, Math 2001

Goal: generalize to new theorems/contexts/repositories

6+ tools for easily adding new projects: https://github.com/cmu-l3/ntp-toolkit
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2. Going beyond competition problems | miniCTX

Context:

• Preceding code in the file
• All accessible premises
• Repository metadata (to recover any other code)
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2. Going beyond competition problems | miniCTX

Does context actually matter? A simple experiment.

Figure 16: “File tuning”: train on (preceding code, state, next-tactic) examples
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2. Going beyond competition problems | miniCTX

Two methods can have similar performance on competition
problems, but vastly difference performance on actual projects:
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2. Going beyond competition problems | deployment

File-tuned model is deployed in LLMLean:

Figure 17: https://github.com/cmu-l3/llmlean
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2. Going beyond competition problems | deployment

Several open-source artifacts:

• Data/models: https://huggingface.co/l3lab
• Data extraction: https://github.com/cmu-l3/ntp-toolkit
• Evaluation: https://github.com/cmu-l3/minictx-eval
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2. Going beyond competition problems | miniCTX

Many approaches to explore in the future:

• “File tuning”: context is preceding code
• Premise selection: context is a set of definitions and theorems
• Full repo: context is all other code in the repository
• ...
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2. Going beyond competition problems

Many other potential tools beyond proof completion!
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This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data

• Going beyond competition problems
• Have actual tools as a goal

• Going beyond mathematics
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3. Going beyond mathematics | miniCodeProps

miniCodeProps: a Minimal Benchmark for Proving Code Properties
Evan Lohn, Sean Welleck
https://arxiv.org/abs/2406.11915
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3. Going beyond mathematics

Interactive theorem provers

• Mathematics:
• Math as code
• Guarantees on proof correctness

• Code:
• Prove properties of code
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3. Going beyond mathematics
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3. Going beyond mathematics

Figure 18: https://aws.amazon.com/blogs/opensource/lean-into-verified-
software-development/
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3. Going beyond mathematics

AI/neural theorem proving for program verification is actively
studied in other proof assistants, such as Coq and Isabelle.

Not in Lean!
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3. Going beyond mathematics

Our question:

• What is the simplest program verification scenario that:
• Is a subproblem of the full ‘verification problem’
• Breaks current neural theorem proving methods

“Simple”:

• Self-contained, no complex dependencies

• Relatively small (fast, cheap evaluation)
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3. Going beyond mathematics

Subproblem: theorem proving! Given (code, property), generate proof
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3. Going beyond mathematics | miniCodeProps

Code blocks and 201 properties from Tons of Inductive Problems7,
translated from Haskell to Lean.

7https://tip-org.github.io/, Claessen et al 2015
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3. Going beyond mathematics | miniCodeProps

MiniCodeProps

• Implementation + properties about lists, trees, and heaps
• Classified into difficulties:

• Easy: Data structure properties
• Medium: Termination properties
• Hard: Sorting algorithm properties
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3. Going beyond mathematics | miniCodeProps

Evaluation:

• Given property and all dependent code, generate a proof

Models:

• GPT-4o: generate full proof, 32 attempts + 1 round of refinement
• ntp-ctx: generate a proof via best-first search

https://github.com/cmu-l3/minicodeprops-eval
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3. Going beyond mathematics | miniCodeProps

Figure 19: Baselines perform well on easy properties
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3. Going beyond mathematics | miniCodeProps

Figure 20: Poor performance on medium/hard properties
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3. Going beyond mathematics | miniCodeProps

Figure 21: Successful proof (GPT-4o) 52



3. Going beyond mathematics | miniCodeProps

Figure 22: Successful proof (GPT-4o)
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3. Going beyond mathematics | miniCodeProps

Figure 23: Human-written proof showing potential length of proofs
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This talk

3 open problems in neural theorem proving in Lean:

• Going beyond human data
• Synthesizing data: problems, proofs, plans, ...

• Going beyond competition problems
• Have actual tools as a goal

• Going beyond mathematics
• Program verification
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Thank you!

Haohan Lin (Tsinghua)
Evan Lohn (CMU)
Jiewen Hu (CMU)
Zhiqing Sun (CMU)
Yiming Yang (CMU)
Thomas Zhu (CMU)

Lean-STaR: Learning to Interleave Thinking and Proving.
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck, 2024.

miniCTX: Neural Theorem Proving with (Long-)Contexts.
Jiewen Hu, Thomas Zhu, Sean Welleck, 2024.

miniCodeProps: a Minimal Benchmark for Proving Code Properties.
Evan Lohn, Sean Welleck, 2024.

Sean Welleck (CMU)
Learning, Language, and Logic (L3) Lab
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