Two Learning Operators for Clause Selection

Guidance: An Experimental Evaluation

Martin Suda*

Czech Technical University in Prague, Czech Republic

AITP, Aussios, September 2024

*Supported by the project RICAIP no. 857306 under the EU-H2020 pro-
gramme and the Czech Science Foundation project no.724-12759S:

Machine Learning Boosted Automated Theorem Proving

Machine Learning Boosted Automated Theorem Proving

ATP technology:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

What are the differences? What is the same? Which one is better?

@ Saturation and Clause Selection
© ENIGMA-style Guidance
© RL-Inspired Guigance

@ Compare, Contrast, Evaluate

@ Saturation and Clause Selection

Saturation-based Theorem Proving

Resolution

Factoring
AVG SAVG AvA’vC_
[AV C)

where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition

I=rvG sV G

I=rv G ts,@t VG
hvavee " (te @t VGV G

where 0 = mgu(l,s) and r0 i 10 and, for the left rule L[s] is not an equality
literal, and for the right rule @ stands either for ~ or % and t'0 i t[s]0

Preprocessing

Unprocessed

Saturation-based Theorem Proving

Resolution Factoring
AVG SAVG AVAVC
GV G (AvV Q)

where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition

I=rv G LshvG I=rvG tslhat'Vve
hvavee " (te @t VGV G

where 0 = mgu(l,s) and rf # 16 and, for the left rule L[s] is not an equality

literal, and for the right rule @ stands either for ~ or % and t'0 i t[s]0

Preprocessing

Unprocessed

At a typical successful end: |Passive| > |Active| > |Proof |

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

/A:l A:2 A:3 A4 A5 A:G\ b
1@\\/\/:4 w:3 A\ w:3 Aw:s Aw:3 A\ wie | PV 38

10

© ENIGMA-style Guidance

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task

@ integrate back with the prover:

ENIGMA-style

The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA AA A A

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

o I/n2 RN a5 ne AN
WA AA A A

Logits:

@ even a binary classifier internally uses a real value

. RO A
A ACAUVUNSANTA

Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA A A A A

Logits:

@ even a binary classifier internally uses a real value

o S ao) w2\ xs D
A A AVUANGANITA 4

Combine with the original strategy
n: 1 A:2 A:3 A: 4 A:5 A:G\

1 < w:a AW:3 Aw:3 Aw:s Aw:3 Aw:e
S MO 1/ 10 a2 Y s as Y a1 asY as)
’ _ Q/:a w:3 A\ W:3 AW:4 A\W:6 A\ W:8)

A3

2 A:2 8
W:3 W:3

=y - - =

© RL-Inspired Guigance

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit)

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

e imperfect information = the optimal policy may be stochastic!

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

v@ V7r(5initial) X ESNMEaNWqW(S’ a)VG In 7r(a|5; 9)

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

V@ V7r(5initial) X ESNMEaNWqW(S’ a)VG In 7r(a|5; 9)

The devil in the details:

e with 7(C|s;; 8) = softmax ([NNg(featuresc)|cepassive;)
the “Vy In 7"-bit boils down to the usual NLL loss

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

V@ V7r(5initial) X ESNMEaNWqW(S’ a)VG In 7r(a|5; 9)

The devil in the details:

e with 7(C|s;; 8) = softmax ([NNg(featuresc)|cepassive;)
the “Vy In 7"-bit boils down to the usual NLL loss

o for q7r(57 C) we simply piCk HDid C show up in the found proof?

@ Compare, Contrast, Evaluate

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

.

Training data:

o ENIGMA-style: pos/neg; over selected only (static)

e RL-inspired: traces; over all the generated (changes in time)

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”)

Training data:

o ENIGMA-style: pos/neg; over selected only (static)

e RL-inspired: traces; over all the generated (changes in time)

@ Both: clauses from found proofs

Basic Comparison |

@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

v

Training data:

o ENIGMA-style: pos/neg; over selected only (static)

e RL-inspired: traces; over all the generated (changes in time)

_

Integrating the learned advice:

@ Both: clauses from found proofs

@ ENIGMA-style: combine with your original heuristic

@ RL-inspired: one queue sorted by the predicted scores

Basic Comparison |l

@ ENIGMA-style: a binary classifier

@ RL-inspired: regression (logits) = action probabilities

Basic Comparison |l

@ ENIGMA-style: a binary classifier
@ RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):

o ENIGMA-style: binary cross entropy (NLL)
o RL-inspired: weighted NLL (weights ~ returns)

Basic Comparison Il

@ ENIGMA-style: a binary classifier
@ RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):
o ENIGMA-style: binary cross entropy (NLL)
o RL-inspired: weighted NLL (weights ~ returns)

Iterative improvement:
@ Both: yes (ENIGMA calls it “looping”)

How High Can It Fly?

Architecture

e simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits

@ a neural part: MLP(featuresc) — logit

How High Can It Fly?

Architecture

e simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits

@ a neural part: MLP(featuresc) — logit

Experimental setup
@ extend Vampire theorem prover
@ 3000 randomly select TPTP problems (FOF/CNF)

@ time limit: ~10s per problem

How High Can It Fly?

Architecture

e simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits

@ a neural part: MLP(featuresc) — logit

Experimental setup
@ extend Vampire theorem prover
@ 3000 randomly select TPTP problems (FOF/CNF)

@ time limit: ~10s per problem

ENIGMA-style

@ unfortunately, did not manage to beat the baseline

How High Can It Fly?

Architecture

e simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits

@ a neural part: MLP(featuresc) — logit

Experimental setup
@ extend Vampire theorem prover
@ 3000 randomly select TPTP problems (FOF/CNF)

@ time limit: ~10s per problem

ENIGMA-style

@ unfortunately, did not manage to beat the baseline
RL-inspired

@ can beat the default strategy by 6%,
(a good goal-directed strategy by 3.5%) on the test set

Training with the RL-inspired Operator

1400 A

1200 A

1000 ~

800 -

600 -

400 -

Baselines:
goal-directed
---- default
av-off

5 10 15

Observations:

@ random initialization
= different start
performance

Training with the RL-inspired Operator

1400 A

1200 A

1000 ~

800 A

600 -

400

Baselines:

---- default
av-off

goal-directed

5 10

15

Observations:

@ random initialization
= different start
performance

@ hidden layer size 16,
32, 64, 128, 256 all
similar performance

Training with the RL-inspired Operator

1400 A __
Wiﬁii‘:—i
12004 {4
1000 A
800 - Baselines:
goal-directed
600 - ---- default
av-off
400 ' . . .
5 10 15

Observations:

@ random initialization
= different start
performance

@ hidden layer size 16,
32, 64, 128, 256 all
similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

Training with the RL-inspired Operator

1400 A __
Mi@.":—i
12004 {4
1000 A
800 - Baselines:
goal-directed
600 - ---- default
av-off
400 ' . . .
5 10 15

Observations:

@ random initialization
= different start
performance

@ hidden layer size 16,
32, 64, 128, 256 all
similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

Future work: ready for experiments with richer feature sets!

Training with the RL-inspired Operator

1400 A —
M-:@:—-—i
12001 Observations:
1000 4 @ random initialization
= different start
800 - Baselines: performance
goal-directed @ hidden layer size 16,
600 - —— default 32, 64, 128, 256 all
av-off similar performance
400 1 . . .
5 10 15

A first (modest) ML-based improvement of a SoTA ATP on TPTP!
Future work: ready for experiments with richer feature sets!

Thank you!

	Saturation and Clause Selection
	

	ENIGMA-style Guidance
	

	RL-Inspired Guigance
	

	Compare, Contrast, Evaluate
	

