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Machine Learning Boosted Automated Theorem Proving

ATP technology: saturation-based
state of the art (cf. CASC)
E, iProver, Vampire, . . .

Heuristic to boost: clause selection
the most important choice point
“selecting the proof clauses” intuition

Two main approaches to date:
ENIGMA-style
RL-inspired

What are the differences? What is the same? Which one is better?
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3 RL-Inspired Guigance
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Saturation-based Theorem Proving

Selection Functions Quality Selections Lookahead Selection Experiments

The Calculus

Resolution Factoring

A _ C1 ¬A0 _ C2

(C1 _ C2)✓
, A _ A0 _ C

(A _ C)✓
,

where, for both inferences, ✓ = mgu(A, A0) and A is not an equality literal

Superposition

l ' r _ C1 L[s]p _ C2

(L[r ]p _ C1 _ C2)✓
or

l ' r _ C1 t[s]p ⌦ t0 _ C2

(t[r ]p ⌦ t0 _ C1 _ C2)✓
,

where ✓ = mgu(l , s) and r✓ 6⌫ l✓ and, for the left rule L[s] is not an equality
literal, and for the right rule ⌦ stands either for ' or 6' and t0✓ 6⌫ t[s]✓

EqualityResolution EqualityFactoring

s 6' t _ C

C✓
,

s ' t _ s 0 ' t0 _ C

(t 6' t0 _ s 0 ' t0 _ C)✓
,

where ✓ = mgu(s, t) where ✓ = mgu(s, s 0), t✓ 6⌫ s✓, and t0✓ 6⌫ s 0✓

Ac#ve	
Preprocessing	

Pa
rs
in
g	

Passive	

Clause	
Selec*on	U

np
ro
ce
ss
ed

	

At a typical successful end: |Passive| ≫ |Active| ≫ |Proof |
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
age: prefer clauses that were generated long time ago
weight: prefer clauses with fewer symbols

Combine them into a single scheme:
have a priority queue ordering Passive for each criterion
alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)

S :
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ENIGMA-style

The core idea
Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

➥ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.’17], . . .

The “pos/neg”s of E:
E prover can be asked to output, for every clause selected in a run,
whether it ended up in the final proof ( pos ) or not ( neg )

Next comes the ML:
represent those clauses somehow (features, NNs, . . . )
train a binary classifier on the task
integrate back with the prover: “try to do more of the pos ”
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Possible Ways of Integrating the Learnt Advice

Priority:
sort by model’s Y/N and tiebreak by age

Logits:
even a binary classifier internally uses a real value

Combine with the original strategy

S ⊕M1,0 :
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Saturation as an Reinforcement-Learning Environment

What ATP heuristics would the aliens come up with?

Agent
the clause selection heuristic

Action
the next clause to select from the current passive set

State
static - the conjecture we are trying to prove
evolving - the internal state of the prover at particular moment

Reward
Score 1 point for solving a problem (within the time limit) ???

➥ TRAIL [Crouse et al.’21], [McKeown’23], [Shminke’23], . . .
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Policy Gradient and REINFORCE [Williams’92]

The (evolving) state s of an ATP is a large amorphous blob:
value-based methods (Q-learning, DQN, . . . ) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy π(a|�s; θ)

can sample actions according to the distribution π

imperfect information ⇒ the optimal policy may be stochastic!

Policy Gradient Theorem

∇θvπ(sinitial ) ∝ Es∼µEa∼πqπ(s, a)∇θ lnπ(a|s; θ)

The devil in the details:
with π(C |si ; θ) = softmax ([NNθ(featuresC )]C∈Passive i ),
the “∇θ lnπ”-bit boils down to the usual NLL loss
for qπ(s,C ) we simply pick IDid C show up in the found proof?
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Basic Comparison I

Starts with:
ENIGMA-style: a working clause selection heuristic
RL-inspired: “tabula rasa”

Training data:

ENIGMA-style: pos/neg; over selected only (static)
RL-inspired: traces; over all the generated (changes in time)

Attractor:
Both: clauses from found proofs

Integrating the learned advice:
ENIGMA-style: combine with your original heuristic
RL-inspired: one queue sorted by the predicted scores
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Basic Comparison II

Model:
ENIGMA-style: a binary classifier
RL-inspired: regression (logits) ⇒ action probabilities

Loss function (for the neural incarnations):

ENIGMA-style: binary cross entropy (NLL)
RL-inspired: weighted NLL (weights ∼ returns)

Iterative improvement:

Both: yes (ENIGMA calls it “looping”)
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How High Can It Fly?

Architecture
simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits
a neural part: MLP(featuresC ) → logit

Experimental setup
extend Vampire theorem prover
3000 randomly select TPTP problems (FOF/CNF)
time limit: ∼10s per problem

ENIGMA-style
unfortunately, did not manage to beat the baseline

RL-inspired
can beat the default strategy by 6%,
(a good goal-directed strategy by 3.5%) on the test set
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Training with the RL-inspired Operator

5 10 15
400

600

800

1000

1200

1400

Baselines:
goal-directed
default
av-off

Observations:

random initialization
⇒ different start
performance

hidden layer size 16,
32, 64, 128, 256 all
similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

Future work: ready for experiments with richer feature sets!

Thank you!
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