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ATP technology: saturation-based
e state of the art (cf. CASC)

o E, iProver, Vampire, ...

Heuristic to boost: clause selection
@ the most important choice point

@ “selecting the proof clauses” intuition

Two main approaches to date:
o ENIGMA-style
@ RL-inspired

What are the differences? What is the same? Which one is better?
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where, for both inferences, 0 = mgu(A, A') and A is not an equality literal

Superposition
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where 0 = mgu(l,s) and rf # 16 and, for the left rule L[s] is not an equality

literal, and for the right rule @ stands either for ~ or % and t'0 i t[s]0

Preprocessing

Unprocessed

At a typical successful end: |Passive| > |Active| > |Proof |
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How is clause selection traditionally done?

Take simple clause evaluation criteria:
@ age: prefer clauses that were generated long time ago

@ weight: prefer clauses with fewer symbols

Combine them into a single scheme:
@ have a priority queue ordering Passive for each criterion

@ alternate between selecting from the queues using a fixed ratio

Example (Organizing Passive via two priority queues)
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The core idea

Learn to recognize and prefer for selection clauses that look like
those that contributed to a proof in past successful runs.

w [Schulz00], ENIGMA [Jakubtv&Urban17], [Loos et al.'17], ...

The “pos/neg’s of E:
E prover can be asked to output, for every clause selected in a run,

whether it ended up in the final proof (|j§88]) or not ([iiEE])

Next comes the ML:
@ represent those clauses somehow (features, NNs, .. .)
@ train a binary classifier on the task
@ integrate back with the prover: “try to do more of the -
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Possible Ways of Integrating the Learnt Advice

Priority:
@ sort by model's Y/N and tiebreak by age

a2 RN A5 as A
WA A A A A

Logits:

@ even a binary classifier internally uses a real value
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Combine with the original strategy
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What ATP heuristics would the aliens come up with?
Agent
@ the clause selection heuristic

Action

@ the next clause to select from the current passive set

State
@ static - the conjecture we are trying to prove

@ evolving - the internal state of the prover at particular moment

Reward

@ Score 1 point for solving a problem (within the time limit) 777

w TRAIL [Crouse et al.’21], [McKeown'23], [Shminke'23], ...
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The (evolving) state s of an ATP is a large amorphous blob:

@ value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to
directly predict the policy 7(a|g; 0)

@ can sample actions according to the distribution

e imperfect information = the optimal policy may be stochastic!

Policy Gradient Theorem

V@ V7r(5initial) X ESNMEaNWqW(S’ a)VG In 7r(a|5; 9)

The devil in the details:

e with 7(C|s;; 8) = softmax ([NNg(featuresc)|cepassive; )
the “Vy In 7"-bit boils down to the usual NLL loss

o for q7r(57 C) we simply piCk HDid C show up in the found proof?
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@ ENIGMA-style: a working clause selection heuristic

@ RL-inspired: “tabula rasa”

v

Training data:

o ENIGMA-style: pos/neg; over selected only (static)

e RL-inspired: traces; over all the generated (changes in time)

_

Integrating the learned advice:

@ Both: clauses from found proofs

@ ENIGMA-style: combine with your original heuristic

@ RL-inspired: one queue sorted by the predicted scores
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Basic Comparison Il

@ ENIGMA-style: a binary classifier
@ RL-inspired: regression (logits) = action probabilities

Loss function (for the neural incarnations):
o ENIGMA-style: binary cross entropy (NLL)
o RL-inspired: weighted NLL (weights ~ returns)

Iterative improvement:
@ Both: yes (ENIGMA calls it “looping”)
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e simple clause features: age, weight, pos/neg-length,
justEq/justNeq, varOcc, goalDist, numSplits

@ a neural part: MLP(featuresc) — logit

Experimental setup
@ extend Vampire theorem prover
@ 3000 randomly select TPTP problems (FOF/CNF)

@ time limit: ~10s per problem

ENIGMA-style

@ unfortunately, did not manage to beat the baseline
RL-inspired

@ can beat the default strategy by 6%,
(a good goal-directed strategy by 3.5%) on the test set
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Training with the RL-inspired Operator

1400 A —
M-:@:—-—i
12001 Observations:
1000 4 @ random initialization
= different start
800 - Baselines: performance
goal-directed @ hidden layer size 16,
600 - —— default 32, 64, 128, 256 all
av-off similar performance
400 1 . . .
5 10 15

A first (modest) ML-based improvement of a SoTA ATP on TPTP!
Future work: ready for experiments with richer feature sets!

Thank you!
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