Two Learning Operators for Clause Selection Guidance: An Experimental Evaluation

Martin Suda*

Czech Technical University in Prague, Czech Republic

AITP, Aussios, September 2024

^{*}Supported by the project RICAIP no. 857306 under the EU-H2020 programme and the Czech Science Foundation project no. 24-127595.

ATP technology:

ATP technology: saturation-based

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, ...

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, ...

Heuristic to boost:

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, . . .

Heuristic to boost: clause selection

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, . . .

Heuristic to boost: clause selection

- the most important choice point
- "selecting the proof clauses" intuition

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, . . .

Heuristic to boost: clause selection

- the most important choice point
- "selecting the proof clauses" intuition

Two main approaches to date:

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, . . .

Heuristic to boost: clause selection

- the most important choice point
- "selecting the proof clauses" intuition

Two main approaches to date:

- ENIGMA-style
- RL-inspired

ATP technology: saturation-based

- state of the art (cf. CASC)
- E, iProver, Vampire, . . .

Heuristic to boost: clause selection

- the most important choice point
- "selecting the proof clauses" intuition

Two main approaches to date:

- ENIGMA-style
- RL-inspired

What are the differences? What is the same? Which one is better?

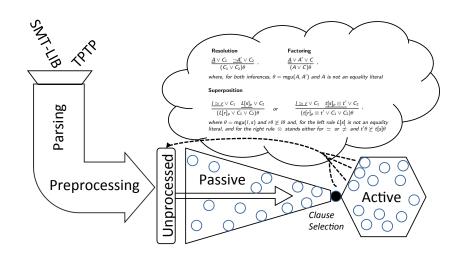
Outline

- Saturation and Clause Selection
- 2 ENIGMA-style Guidance
- 3 RL-Inspired Guigance
- 4 Compare, Contrast, Evaluate

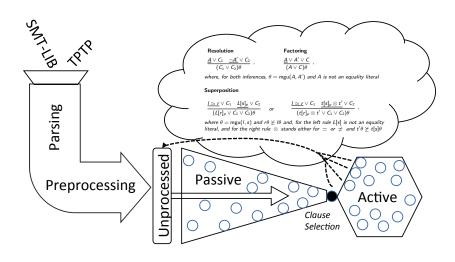
Outline

- Saturation and Clause Selection
- 2 ENIGMA-style Guidance
- 3 RL-Inspired Guigance
- 4 Compare, Contrast, Evaluate

Saturation-based Theorem Proving



Saturation-based Theorem Proving



At a typical successful end: $|Passive| \gg |Active| \gg |Proof|$

How is clause selection traditionally done?

Take simple clause evaluation criteria:

- age: prefer clauses that were generated long time ago
- weight: prefer clauses with fewer symbols

How is clause selection traditionally done?

Take simple clause evaluation criteria:

- age: prefer clauses that were generated long time ago
- weight: prefer clauses with fewer symbols

Combine them into a single scheme:

- have a priority queue ordering *Passive* for each criterion
- alternate between selecting from the queues using a fixed ratio

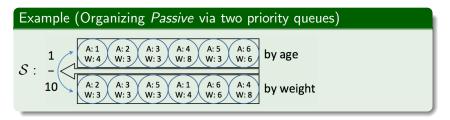
How is clause selection traditionally done?

Take simple clause evaluation criteria:

- age: prefer clauses that were generated long time ago
- weight: prefer clauses with fewer symbols

Combine them into a single scheme:

- have a priority queue ordering *Passive* for each criterion
- alternate between selecting from the queues using a fixed ratio



Outline

- Saturation and Clause Selection
- 2 ENIGMA-style Guidance
- 3 RL-Inspired Guigance
- 4 Compare, Contrast, Evaluate

The core idea

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.'17], ...

The core idea

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.'17], ...

The "pos/neg"s of E:

E prover can be asked to output, for $\underline{\text{every clause selected}}$ in a run, whether it ended up in the final proof $(\underline{\text{pos}})$ or not $(\underline{\text{neg}})$

The core idea

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.'17], . . .

The "pos/neg"s of E:

E prover can be asked to output, for $\underline{\text{every clause selected}}$ in a run, whether it ended up in the final proof $(\underline{\text{pos}})$ or not $(\underline{\text{neg}})$

Next comes the ML:

- represent those clauses somehow (features, NNs, ...)
- train a binary classifier on the task
- integrate back with the prover:

The core idea

Learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs.

➡ [Schulz00], ENIGMA [Jakubův&Urban17], [Loos et al.'17], . . .

The "pos/neg"s of E:

E prover can be asked to output, for $\underline{\text{every clause selected}}$ in a run, whether it ended up in the final proof $(\underline{\text{pos}})$ or not $(\underline{\text{neg}})$

Next comes the ML:

- represent those clauses somehow (features, NNs, ...)
- train a binary classifier on the task
- integrate back with the prover: "try to do more of the pos"

Possible Ways of Integrating the Learnt Advice

Priority:

sort by model's Y/N and tiebreak by age

Possible Ways of Integrating the Learnt Advice

Priority:

sort by model's Y/N and tiebreak by age

Logits:

• even a binary classifier internally uses a real value

```
A: 4 A: 5 A: 6 A: 2 A: 3 A: 1 W: 4
```

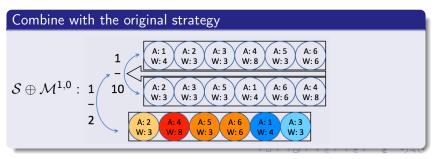
Possible Ways of Integrating the Learnt Advice

Priority:

sort by model's Y/N and tiebreak by age

Logits:

• even a binary classifier internally uses a real value



Outline

- Saturation and Clause Selection
- 2 ENIGMA-style Guidance
- RL-Inspired Guigance
- 4 Compare, Contrast, Evaluate

What ATP heuristics would the aliens come up with?

What ATP heuristics would the aliens come up with?

Agent

• the clause selection heuristic

Action

• the next clause to select from the current passive set

What ATP heuristics would the aliens come up with?

Agent

• the clause selection heuristic

Action

• the next clause to select from the current passive set

State

- static the conjecture we are trying to prove
- evolving the internal state of the prover at particular moment

What ATP heuristics would the aliens come up with?

Agent

• the clause selection heuristic

Action

• the next clause to select from the current passive set

State

- static the conjecture we are trying to prove
- evolving the internal state of the prover at particular moment

Reward

• Score 1 point for solving a problem (within the time limit)

What ATP heuristics would the aliens come up with?

Agent

• the clause selection heuristic

Action

• the next clause to select from the current passive set

State

- static the conjecture we are trying to prove
- evolving the internal state of the prover at particular moment

Reward

• Score 1 point for solving a problem (within the time limit) ???

What ATP heuristics would the aliens come up with?

Agent

• the clause selection heuristic

Action

• the next clause to select from the current passive set

State

- static the conjecture we are trying to prove
- evolving the internal state of the prover at particular moment

Reward

- Score 1 point for solving a problem (within the time limit) ???
- → TRAIL [Crouse et al.'21], [McKeown'23], [Shminke'23], ...

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{s};\theta)$

Policy Gradient and REINFORCE [Williams'92]

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{x};\theta)$

ullet can sample actions according to the distribution π

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{s};\theta)$

- ullet can sample actions according to the distribution π
- imperfect information ⇒ the optimal policy may be stochastic!

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{s};\theta)$

- ullet can sample actions according to the distribution π
- ullet imperfect information \Rightarrow the optimal policy may be stochastic!

Policy Gradient Theorem

$$\nabla_{\theta} v_{\pi}(s_{initial}) \propto \mathbb{E}_{s \sim \mu} \mathbb{E}_{a \sim \pi} q_{\pi}(s, a) \nabla_{\theta} \ln \pi(a|s; \theta)$$

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{s};\theta)$

- ullet can sample actions according to the distribution π
- ullet imperfect information \Rightarrow the optimal policy may be stochastic!

Policy Gradient Theorem

$$\nabla_{\theta} v_{\pi}(s_{initial}) \propto \mathbb{E}_{s \sim \mu} \mathbb{E}_{a \sim \pi} q_{\pi}(s, a) \nabla_{\theta} \ln \pi(a|s; \theta)$$

The devil in the details:

• with $\pi(C|s_i;\theta) = \operatorname{softmax}([\operatorname{NN}_{\theta}(\textit{features}_C)]_{C \in \textit{Passive}_i})$, the " $\nabla_{\theta} \ln \pi$ "-bit boils down to the usual NLL loss

The (evolving) state s of an ATP is a large amorphous blob:

• value-based methods (Q-learning, DQN, ...) seem hopeless

Instead, with policy gradient methods, we train a network to directly predict the policy $\pi(a|\mathbf{s};\theta)$

- ullet can sample actions according to the distribution π
- ullet imperfect information \Rightarrow the optimal policy may be stochastic!

Policy Gradient Theorem

$$\nabla_{\theta} v_{\pi}(s_{initial}) \propto \mathbb{E}_{s \sim \mu} \mathbb{E}_{a \sim \pi} q_{\pi}(s, a) \nabla_{\theta} \ln \pi(a|s; \theta)$$

The devil in the details:

- with $\pi(C|s_i; \theta) = \operatorname{softmax}([\operatorname{NN}_{\theta}(features_C)]_{C \in Passive_i})$, the " $\nabla_{\theta} \ln \pi$ "-bit boils down to the usual NLL loss
- for $q_{\pi}(s, C)$ we simply pick $\mathbb{I}_{\text{Did } C \text{ show up in the found proof?}}$

Outline

- Saturation and Clause Selection
- 2 ENIGMA-style Guidance
- 3 RL-Inspired Guigance
- 4 Compare, Contrast, Evaluate

Starts with:

- ENIGMA-style: a working clause selection heuristic
- RL-inspired: "tabula rasa"

Starts with:

- ENIGMA-style: a working clause selection heuristic
- RL-inspired: "tabula rasa"

Training data:

- ENIGMA-style: pos/neg; over selected only (static)
- RL-inspired: traces; over all the generated (changes in time)

Starts with:

- ENIGMA-style: a working clause selection heuristic
- RL-inspired: "tabula rasa"

Training data:

- ENIGMA-style: pos/neg; over selected only (static)
- RL-inspired: traces; over all the generated (changes in time)

Attractor:

Both: clauses from found proofs

Starts with:

- ENIGMA-style: a working clause selection heuristic
- RL-inspired: "tabula rasa"

Training data:

- ENIGMA-style: pos/neg; over selected only (static)
- RL-inspired: traces; over all the generated (changes in time)

Attractor:

Both: clauses from found proofs

Integrating the learned advice:

- ENIGMA-style: combine with your original heuristic
- RL-inspired: one queue sorted by the predicted scores

Model:

- ENIGMA-style: a binary classifier
- RL-inspired: regression (logits) ⇒ action probabilities

Model:

- ENIGMA-style: a binary classifier
- RL-inspired: regression (logits) ⇒ action probabilities

Loss function (for the neural incarnations):

- ENIGMA-style: binary cross entropy (NLL)
- RL-inspired: weighted NLL (weights ∼ returns)

Model:

- ENIGMA-style: a binary classifier
- RL-inspired: regression (logits) ⇒ action probabilities

Loss function (for the neural incarnations):

- ENIGMA-style: binary cross entropy (NLL)
- ullet RL-inspired: weighted NLL (weights \sim returns)

Iterative improvement:

Both: yes (ENIGMA calls it "looping")

Architecture

- simple clause features: age, weight, pos/neg-length, justEq/justNeq, varOcc, goalDist, numSplits
- a neural part: $MLP(features_C) \rightarrow logit$

Architecture

- simple clause features: age, weight, pos/neg-length, justEq/justNeq, varOcc, goalDist, numSplits
- a neural part: $MLP(features_C) \rightarrow logit$

Experimental setup

- extend Vampire theorem prover
- 3000 randomly select TPTP problems (FOF/CNF)
- time limit: \sim 10s per problem

Architecture

- simple clause features: age, weight, pos/neg-length, justEq/justNeq, varOcc, goalDist, numSplits
- a neural part: $MLP(features_C) \rightarrow logit$

Experimental setup

- extend Vampire theorem prover
- 3000 randomly select TPTP problems (FOF/CNF)
- time limit: \sim 10s per problem

ENIGMA-style

unfortunately, did not manage to beat the baseline

Architecture

- simple clause features: age, weight, pos/neg-length, justEq/justNeq, varOcc, goalDist, numSplits
- a neural part: $MLP(features_C) \rightarrow logit$

Experimental setup

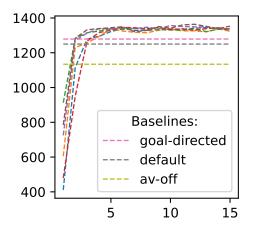
- extend Vampire theorem prover
- 3000 randomly select TPTP problems (FOF/CNF)
- time limit: \sim 10s per problem

ENIGMA-style

unfortunately, did not manage to beat the baseline

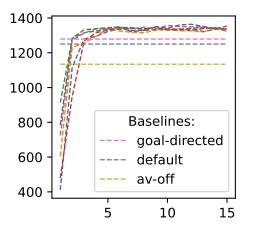
RL-inspired

can beat the default strategy by 6%,
(a good goal-directed strategy by 3.5%) on the test set



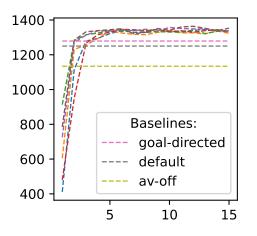
Observations:

random initialization
 ⇒ different start
 performance



Observations:

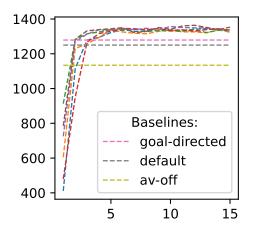
- random initialization
 ⇒ different start
 performance
- hidden layer size 16, 32, 64, 128, 256 all similar performance



Observations:

- random initialization⇒ different startperformance
- hidden layer size 16, 32, 64, 128, 256 all similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

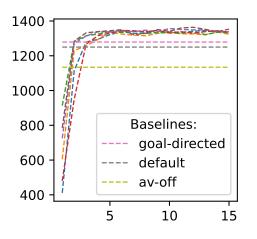


Observations:

- random initialization⇒ different startperformance
- hidden layer size 16, 32, 64, 128, 256 all similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

Future work: ready for experiments with richer feature sets!



Observations:

- random initialization
 ⇒ different start
 performance
- hidden layer size 16, 32, 64, 128, 256 all similar performance

A first (modest) ML-based improvement of a SoTA ATP on TPTP!

Future work: ready for experiments with richer feature sets!

Thank you!

