Mathematical Olympiad

To the geometry and beyond...

- 2017: AlphaGo
- 2018: Who cares about Euclidean Geometry?
- 2020: Grand IMO Challenge
- 2021: MiniF2F benchmark
- 2022: chatGPT
- 2024
 - AlphaGeometry
 - AI-MO challenge
 - Math Olympiad solver (Numina)
 - PutnamBench
 - AlphaProof

- 2017: AlphaGo
- 2018: Who cares about Euclidean Geometry?
- 2020: Grand IMO Challenge
- 2021: MiniF2F benchmark
- 2022: chatGPT
- 2024
 - AlphaGeometry
 - AI-MO challenge
 - Math Olympiad solver (Numina)
 - PutnamBench
 - AlphaProof

IMO (International Mathematical Olympiad)

- Prestigious competition for pre-university students
- since 1959
- max 6 competitors per country, 108 participant countries last year
- 4 domains:
 - Geometry
 - Number Theory
 - Algebra
 - Combinatorics

Why IMO?

- The most curated problem set
 - Theoretically solvable
 - Novel problems
- Mathematicians will understand you

Geometry

- The easiest IMO domain
- 1996 / 2000: Deduction database / Full Angle (Chou et al)
 - ATP geometry methods
- 2018: AITP talk
- 2020: GeoLogic:
 - ITP for IMO-style geometry
- 2024: AlphaGeometry (DeepMind, Trinh et al)
 - Solves 83% of all historical IMO geometry problems from the past 25 years

Geometry key components

- GeoLogic
 - Semi-formal logic
 - Conveniently strong automation

- AlphaGeometry
 - Semi-formal logic
 - Even stronger automation
 - Training on synthetic data

- Lemmata
- Why didn't I get to AlphaGeometry?
 - I was just a mathematician / idealist

Geometry key components

- GeoLogic
 - Semi-formal logic
 - Conveniently strong automation
 - Lemmata

- AlphaGeometry
 - Semi-formal logic
 - Even stronger automation
 - Training on synthetic data

- Why didn't I get to AlphaGeometry?
 - I was just a mathematician / idealist

Geometry key components

- GeoLogic
 - Semi-formal logic
 - Conveniently strong automation

- AlphaGeometry
 - Semi-formal logic
 - Even stronger automation
 - Training on synthetic data

- Lemmata
- Why didn't I get to AlphaGeometry?
 - I was just a mathematician / idealist

So, is geometry done?

Geometry is a toy domain

• The main purpose is a playground for experiments with ML / logic

Geometry	General math
Construction	Functional program
Predicate description	Logical program
Using a diagram	Using a model
Semiformal to formal	Informal to formal
Compositionality (lemmata)	Compositionality (lemmata)

AlphaProof

- Tactic prediction for Lean
- Trained on ~1M autoformalized examples
- Reinforcement-learning based
- RL loop also involved while solving a particular problem
- Solved Algebra & Number theory problems from IMO 2024 (P1, P2, P6)

3 years after AlphaGo? ...

3 years after AlphaGo? ... didn't work out

- 3 years after AlphaGo? ... didn't work out
- 3 years after IMO? ...

- 3 years after AlphaGo? ... didn't work out
- 3 years after IMO? ...
- It is hard to make predictions,
- especially about the future.

- 3 years after AlphaGo? ... didn't work out
- 3 years after IMO? ...
- It is hard to make predictions,
- especially about the future.

Important note: Winning gold \neq superhuman

IMO categories in a nutshell

(quoting Štěpán Šimsa)

- Geometry = Imagination
- Algebra = Calculation
- Number theory = Knowledge
- Combinatorics = Thinking

Combinatorics still hard

I am still a mathematician, idealist...

Let me do what I did with Geometry

Games

- Hex, Sokoban (PSPACE-complete)
- Case split
- CDCL style

- n available jumps a finite (distinct) set of positive integers
- n-1 mines a subset of points {1, 2, ..., sum(jumps)-1}
- Grasshopper wants to
 - get from 0 to sum(jur
 - use each available jur
 - do not hit any mine
- Task: Prove it is always

- n available jumps a finite (distinct) set of positive integers
- n-1 mines a subset of points {1, 2, ..., sum(jumps)-1}
- Grasshopper wants to
 - get from 0 to sum(jumps)
 - use each available jump exactly once (forward)
 - do not hit any mine
- Task: Prove it is always possible

- n available jumps a finite (distinct) set of positive integers
- n-1 mines a subset of points {1, 2, ..., sum(jumps)-1}
- Grasshopper wants to
 - get from 0 to sum(jumps)
 - use each available jump exactly once (forward)
 - do not hit any mine
- Task: Prove it is always possible

- n available jumps a finite (distinct) set of positive integers
- n-1 mines a subset of points {1, 2, ..., sum(jumps)-1}
- Grasshopper wants to
 - get from 0 to sum(jumps)
 - use each available jump exactly once (forward)
 - do not hit any mine
- Task: Prove it is always possible

Solution process

- (high level) guess induction step at the start
- Since then, we play a "minigame"
 - Construction-based (like geometry)
 - Convenient enough automation
 - Custom instantiation & SMT LIA
 - Automatic case split when automation fails
 - CDCL not as essential?
 - Model is useful at least for rendering

Grasshopper solution

- Start with the biggest jump J
 - if we jump over at least one mine and don't land on any, we can apply induction

- Two possible problems
 - all mines far away
 - biggest jump lands on a mine

- Remove first mine
- Apply induction
- Insert the largest jump to fix the solution

- Remove first mine
- Apply induction
- Insert the largest jump to fix the solution

- Remove first mine
- Apply induction
- Insert the largest jump to fix the solution

- Remove first mine
- Apply induction
- Insert the largest jump to fix the solution

• Try an analogous approach

• What to do with mines before?

- What to do with mines before?
 - Use them to restrict the IH

- What to do with mines before?
 - Use them to restrict the IH

- What to do with mines before?
 - Use them to restrict the IH

- What to do with mines before?
 - Use them to restrict the IH

- What to do with mines before?
 - Use them to restrict the IH

• Try an analogous approach

Problem Solved!