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Disclaimers

▶ I am an AI outsider
▶ I am an ITP power user
▶ This presentation is mostly speculative and opinion-based

▶ ...but I did find some opportunity to hawk my wares in here
▶ This is not my area of expertise

▶ Shoutout to Adam Vandervorst and Anneline Daggelinckx, who have also
written on this topic and are probably better informed than me about it
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Provably safe systems

▶ Josef suggested I give a review / response of this paper for the AITP crowd.
Let’s see how it goes

Summary

▶ Misaligned AGI is an existential threat
▶ Properly addressing this threat requires a “security mindset”, treating AGIs as

full adversaries
▶ The solution is to use mathematical proof to ensure that deployed programs

meet their specifications
▶ The proofs can be constructed by AIs
▶ The algorithms satisfying those proofs are also constructed by AI

▶ In particular, the ML algorithms themselves are not the ones doing the job

▶ Regulations should require that only verified components are deployed
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My take on it

▶ I am significantly less hopeful than Tegmark and Omohundro that AIs will
solve our problems

▶ But I agree with most of the main points:
▶ Misaligned AGI is an existential threat

▶ Properly addressing this threat requires a “security mindset”, treating AGIs as
full adversaries

▶ The solution is to use mathematical proof to ensure that deployed programs
meet their specifications

▶ The proofs can be constructed by��AIs computer-assisted humans
▶ The algorithms satisfying those proofs are constructed by��AI programmers

▶ In particular, the ML algorithms themselves are not the ones doing the job
▶ Regulations should require that only verified components are deployed (?)
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Proof-carrying code

▶ Tegmark and Omohundro envision a whole stack of proved components:
▶ Proof-carrying code (PCC) is code which carries within it a proof of correctness
▶ Provably Compliant Hardware (PCH)
▶ “Provable Contracts (PC) govern physical actions by using secure hardware to

provably check compliance with a formal specification before actions are taken”
▶ “Provable Meta-Contracts (PMC) impose formal constraints on the creation or

modification of other provable contracts”

▶ This sounds great to me, but also slightly unrealistic
▶ There is not much care taken to restrict to areas where formal specification is

feasible
▶ Examples given in the paper stray very close to things like ethical principles that

have been the subject of philosophical debate for centuries
▶ It is certainly possible to have formal specifications for code and hardware, but

this is generally limited to areas where design is “deliberate”
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Proof-carrying code

▶ PCC itself (deploying the proof with the code) is not really needed here
▶ It also adds some self-referentiality to the proof: should the proof generation

capacity of the code be part of the proof as well?
▶ To me, saying AI should write the proofs is overestimating the strength of AI

and underestimating the capabilities of humans empowered with the right
language design
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Provably compliant hardware

▶ This is an area I would love to break into, but the lack of open source
hardware makes things hard for people not at Intel et al.

▶ Key question: proved to whom?
▶ Zero-knowledge proofs to the rescue?
▶ From what I know, this is already being done to some extent at Intel et al,

because mistakes are extremely expensive
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The troubles with proving stuff correct

▶ Specifications are harder and proofs are easier than the paper gives credit for

▶ The most common issue is that the proof cannot be completed because the
system is in fact broken
▶ Row-Hammer is given as an example of a side channel to get around PCC
▶ ...but it is a bug in the hardware
▶ It’s not a hardware spec bug, because the bad behavior should clearly not be

user-visible
▶ But the bug in physical implementation is not easily fixed

▶ If you take this kind of project seriously, you quickly find that bugs exist all
through the tech stack and the theorem you want to have is just not true. How
to proceed?
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Mechanistic interpretability (MI)

▶ Tegmark suggests that algorithms can be distilled from neural networks by a
kind of computational neuroscience

▶ “Once a good algorithm has been discovered, neural networks lose their
computational advantage. Indeed, PCCs may be more efficient, because
neural networks have been shown to underperform GOFAI methods on basic
tasks such as low-dimensional interpolation [74].”
▶ In my opinion, this is an understatement. There are very few tasks where neural

networks are even close to computationally optimal for the tasks they have been
trained to do, and tailor-made programs can clearly win by orders of magnitude

▶ I have serious ethical concerns about the increasingly extreme levels of compute
being used on ML of late, centralizing power in the few companies that can
afford it

▶ We should be using MI to get simple algorithms out of the deeply embedded
gym environment used for the discovery process

▶ Possibly this ends up just looking like traditional program synthesis?
▶ This is also just a fancy kind of hyperparameter tuning
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Regulating AGI

▶ A key component of this plan is that regulators ensure that components are
proved correct for safety reasons

▶ This is important because formal proofs at this level are not economically
justifiable otherwise
▶ Intel might try to prove their chips correct today, but certainly Linux wouldn’t.

Who would pay for it?

▶ My own utopian vision is that we should make formal proof more
economically viable by making it easier to use, esp. in software development

▶ Regulations require literally every government to be in agreement on this
topic, like a nuclear arms pact. This never seems to work in practice, and it’s
even easier here to have rogue actors

▶ I think the best we can hope for is increased use of formal proof in
safety-critical systems
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How to write correct programs
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Verified compilation

▶ Goal: To have a way to write programs with functional correctness properties

▶ Goal: Minimize the collection of unverified components (the TCB)
▶ Goal: Minimize the amount of labor involved in the previous goals

▶ both human and machine labor
▶ human labor: limits scalability because it makes it too costly to build verified

systems
▶ computer labor: limits scalability less making it costly to maintain verified

systems, but mostly limits availability to users without big computing budgets
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Verified compilation

▶ Solution: Raise the level of abstraction

▶ applies to both
programs (compilers for high level languages)
and proofs (proof assistants and verified compilers)

▶ How can we actually build tools to facilitate this?
▶ Interlude: CompCert
▶ Interlude: Metamath C
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Metamath C

▶ Experimental language and compiler for writing verified programs
▶ Syntax somewhat similar to Dafny or Rust
▶ What sets it apart from most other programming languages is that the compiler

outputs a proof

15 / 44



Two perspectives on provable correctness

Low level
▶ Computers execute machine code. My computer executes x86, so we need the

execution semantics of x86

▶ Read the spec (this is public information)
▶ We also need the specification of the input and output relation; for linux this

means specifying how the read() and write() system calls work
▶ Read the... manpage? (this is mostly spec’d in POSIX, although not very well)

▶ Now we can say things like “This sequence of bytes of machine code, when
executed, will calculate the following input-output relation”
▶ Good enough for one-shot programs, but programs with an interaction

component need more exotic formalization
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Two perspectives on provable correctness

High level

▶ Proof languages like Lean generally operate at the level of a type system, often
an elaborate one

▶ The purpose is to model abstract entities that the programmer wants to reason
about

▶ Proofs are done at this level
▶ For systems languages like C or Rust, the type system is also fairly

transparent about how types relate to bytes (data representation)
The role of a compiler is to connect the high level view to the low level, ideally
with minimal intervention from the user
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Type system as prover

Programming languages have come a long way in terms of provable correctness
▶ Assembly: bare minimum type system required to make instructions

compilable

▶ C: Typed pointers, structs
▶ Java: Generic types, type polymorphism
▶ Haskell: Algebraic data types
▶ Rust: Linear types
▶ Static analyzers: Value analysis, contract checking
▶ Lean: Dependent types, proof objects, the type system is an ITP
▶ F∗: the type system is an ATP

A type checker is just a simple theorem prover; the study of one naturally leads to
the other
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Linear types

▶ In a traditional type system, any value in the context can be used any number
of times

▶ In a linear type system, values are “used up” and so can be used to represent
non-renewable resources and ownership

▶ (It really helps if you have written Rust code to understand how this works)

let vec: Vec<u32> = vec![0, 1, 2];
drop(vec);
drop(vec); // Error!
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Separation logic

▶ Once you start caring about values and not just types, propositions become
linear types, and computation can consume propositions
▶ {x 7→ 1} x := 2 {x 7→ 2}

▶ This is necessary to avoid everything becoming parameterized on the
machine state
▶ These propositions are modeled internally as State -> Prop

▶ Separation logic adds the ability to refer to pieces of the state, with a structural
rule saying that unrelated parts of the state are unchanged
▶ {y 7→ v ∗ z 7→ w ∗ x 7→ 1} x := 2 {y 7→ v ∗ z 7→ w ∗ x 7→ 2}
▶ This is very important for modularity
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Metamath C

▶ “C with dependent types”

▶ Basic structure is similar to C

▶ “hypothesis variables” hold on to
separating propositions

▶ computationally irrelevant (ghost)
variables are marked

it ∈ Item ::= type S(α,R) := τ type declaration
| const t := e constant declaration
| global t := e global variable declaration

| proc f (R) : R := e procedure declaration
e ∈ Expr ::= x variable reference

| () | true | false | n constants
| e1 + e2 | e1 ∗ e2 | −e addition, multiplication, negation

| if h? : e1 then e2 else e3 conditionals
| ⟨e⟩ tuple
| let t := e1 in e2 assignment to a variable
| η← e; e assignment
| F(e) procedure call
| return e procedure return

| label k(R) := e in e′ local mutual tail recursion
| goto k(e) local tail call
| unreachable e unreachable statement
| entail e p entailment proof
| assert e assertion
| typeof e take the type of a variable
| . . .
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Metamath C

▶ Types are a combination of C/Rust-style
types, and separating propositions

▶ A variable can be “moved” by using it
(substructural logic)

▶ The typeof operator can “take” the type
of a variable x : τ and put it in a
hypothesis h : x : τ , and pun puts it
back

▶ Not pictured: match, ghost,
owned/shared/mutable pointers, heap
references, while/for loops, variants and
invariants, ...

t ∈ TupPat ::= | x | x ignored, variable, ghost variable

| t : τ | ⟨t⟩ type ascription, tuple

R ∈ Arg ::= x : τ | x : τ regular/ghost argument
τ ∈ Type ::= ⊤ | ⊥ | 1 | bool true, false, unit, booleans

| α type variable
| S(τ, e) user-defined type
|Ns | Zs unsigned/signed integers
| [τ; e] array type

| ∗ τ |
∑

R (dependent) tuple type

| τ? maybe-uninit type
| e assert that a boolean value is true
| ∀x : τ, τ′ | ∃x : τ, τ′ universal, existential quantification
| τ1 ∧ τ2 | τ1 ∨ τ2 conjunction, disjunction
| τ1 → τ2 | ¬τ implication, negation
| τ1 ∗ τ2 | τ1 −∗ τ2 separating conjunction/implication
| refa τ borrowed type
| &sn e pointer type
| e 7→ e′ points-to assertion
| x : τ typing assertion

| τ ghost type
| |τ| moved type
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Metamath C: is prime

Here is an example2 of a simple function to compute primes:

proc is_prime (n: u32) : bool :=
for i in 2..n-1 do

if n % i = 0 then
return false

true

2MMC uses a lisp-like syntax that I have not grown to like, so this is an artist’s interpretation
23 / 44



Metamath C: is prime

With proofs:

def decidable (p: Type) := (b: bool) * (b ↔ p)
proc is_prime (n: u32) (h: n , 0) :

decidable (n = 1 ∨ prime n) :=
for h2: i in 2..n-1 do
if h3: n % i = 0 then
-- h2: i ∈ 2..n-1
-- h3: n % i = 0
return (false,
show false ↔ n = 1 ∨ prime n
...)

(true,
show true ↔ n = 1 ∨ prime n
...)
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Metamath C: is prime

We need more to prove the omitted parts:

def decidable (p: Type) := (b: bool) * (b ↔ p)
proc is_prime (n: u32) (h: n , 0) :

decidable (n = 1 ∨ prime n) :=
for h2: i in 2..n-1 do
show n % i , 0
if h3: n % i = 0 then
-- h2: i ∈ 2..n-1
-- h3: n % i = 0
return (false, ...)

else
-- h3: n % i , 0
h3

-- h2: ∀ i ∈ 2..n-1, n % i , 0
(true, ...)
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Metamath C: Mutation

proc _ :=
let x: u8 := 1
have x = 1 := rfl
let y := &x -- y: &sn x
let z := *y -- z: u8 := x
have z = 1 := rfl
*y <- 2
have z = 1 := rfl
have x = 2 := rfl
-- x† := 1
-- y := &sn x†
-- z := x†
-- x := 2
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Metamath C: Mutation

It’s not just shadowing:

proc _ (b: bool) :=
let x: u8 := 1
have h: x = 1 := rfl
if b then

x <- 2
have x = 1 := rfl -- fails
-- x† := 1
-- h: x† = 1
-- x: u8
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Metamath C: Mutation

Carrying mutation information out of an if statement:

proc _ (b: bool) :=
let x: u8 := 1
have h: x = 1 ∨ x = 2 := or.inl rfl
if b then
x <- 2
h: x = 1 ∨ x = 2 <- or.inr rfl

-- x: u8
-- h: x = 1 ∨ x = 2
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Metamath C: Big integers

proc _ : u64 :=
let x: nat := 10 ˆ 60 + 1 -- not representable
x as u64 -- representable!

▶ There are types u8, u16, u32, u64, nat
▶ There is no big integer implementation, nat means unbounded integers and

maps to the “true”N
▶ Compiler will fail if it can’t figure out how to compile your expression
▶ Usable in ghost variables and specifications:

proc _ : (r: u64) * (ghost x: nat) * (x as u64 = r) :=
let x: nat := 10 ˆ 60 + 1
(x as u64, x, rfl)
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Metamath C: Pointers

proc _ (x: &u64) : u64 :=
let (v, ptr) := x
-- v: ref u64
-- ptr: &sn v
let y := *ptr
-- y := v
-- *ptr <- 2 -- fails
y
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Metamath C: Ghost state

proc _ (x: u64) (ghost y: u64) : u64 :=
-- x: u64
-- ghost y: u64
let z := y
-- ghost z := y
z -- Error, returning ghost data in relevant position

proc _ (x: u64) (ghost y: u64) : u64 := y -- not ok
proc _ (x: u64) (ghost y: u64) : u64 := x -- ok
proc _ (x: u64) (ghost y: u64) : ghost u64 := y -- ok

▶ Types can refer to ghost values
▶ ghost y: u64 is equivalent to y: ghost u64
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Getting proofs out of a compiler
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Approaches to verified compilation

▶ In CompCert, there is a theorem of the following form:

Theorem (CompCert correctness)

If the compiler compile is run on input program P to get assembly program Q, and every
possible behavior of P under the execution semantics of C is not UB (bad), then the
assembly program Q exhibits only behaviors of the original program P. That is:

∀P Q, compile(P) = OK(Q)→

(∀σ, exec C(P, σ)→ ¬bad(σ))→

(∀σ, exec asm(Q, σ)→ exec C(P, σ))
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Approaches to verified compilation

▶ The Metamath C compiler generates theorems of the following form:

Theorem (Metamath C correctness)

Every behavior exhibited by machine code program myprog (does not exhibit UB and)
satisfies specification myspec:

∀σ, exec x86(myprog, σ)→ ¬bad(σ) ∧ myspec(σ)
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Approaches to verified compilation

Some key differences:
▶ The CompCert theorem is generalized over possible programs P and Q, while

the Metamath C theorem is specialized to an individual program Q := myprog
which is generated by the compiler

▶ The CompCert theorem does not make any mention of user specifications,
only the C specification. The user is still responsible for proving the program
meets its specification via some C analysis framework like VST
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Approaches to verified compilation

Arguably, the user’s goal is to produce something like the Metamath C theorem.
Let us make the CompCert theorem look more like it:

1. First, we write a program my C prog that is correct
2. We prove it is correct (in Coq), yielding a theorem my C prog |= myspec

P |= S ⇐⇒ ∀σ, exec C(P, σ)→ ¬bad(σ) ∧ S(σ)

3. We run the CompCert compiler (in Coq), yielding a term asm out and a proof
of compile(my C prog) = OK(asm out)

4. By composing with the correctness theorem we obtain
∀σ, exec asm(asm out, σ)→ ¬bad(σ) ∧ myspec(σ)
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Approaches to verified compilation

Most of these steps have an analogue in the Metamath C model:
1. First, we write a program my MMC prog that is correct
2. Because my MMC prog is written in a language with proofs we can

simultaneously prove it is correct
3. We run the Metamath C compiler, yielding a term asm out and a proof of
∀σ, exec x86(x86 out, σ)→ ¬bad(σ) ∧ myspec(σ)
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Approaches to verified compilation

1. The Metamath C approach is called “proof-carrying code” (PCC) in the
literature

2. CompCert is a verified compiler, MMC is a certifying compiler
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Approaches to verified compilation

1. The Metamath C approach is called “proof-carrying code” (PCC) in the
literature

2. CompCert is a verified compiler, MMC is a certifying compiler
3. CompCert also makes use of translation validation: run an unverified

program and validate the results
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Translation Validation

(** [regalloc] is the external register allocator.
It is written in OCaml in [backend/Regalloc.ml]. *)

Parameter regalloc: RTL.function -> res LTL.function.

(** Register allocation followed by validation. *)
Definition transf_function (f: RTL.function) :

res LTL.function :=
match type_function f with
| Error m => Error m
| OK env =>

match regalloc f with
| Error m => Error m
| OK tf => do x <- check_function f tf env; OK tf
end

end.
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Why PCC?

▶ In the proof generated by CompCert, there are three parts to the proof:
▶ Parts 1-2 (correctness in the source language) are written by the user and

tailored to the program
▶ Part 3 (evaluating the compiler) is run in the Coq kernel and depends on the

program
▶ Part 4 (applying the correctness theorem) is O(1) work, not program dependent

▶ The MMC approach omits steps 1-2 entirely from the proof and combines 3-4
▶ The key observation is that “evaluating the compiler” on a particular

program could be assembling a correctness proof for no added cost
▶ Whether “no added cost” is true depends on the performance characteristics of

the kernel
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Benefits of PCC

▶ The biggest one: the compiler doesn’t have to be verified or written in a proof
assistant
▶ This is true also of the TV approach, but...

▶ Now how are we supposed to prove compile(my C prog) = OK(asm out)?
▶ Parameter is a synonym of Axiom and blocks reduction in the type theory
▶ The proof can’t be refl anymore without kernel magic

▶ Supports both deterministic and nondeterministic compilation strategies
▶ “Nondeterministic” here means that the proof itself doesn’t have to care how a

decision was made, e.g. stack slots in a function

▶ The overhead of proving that a nondeterministic program can evaluate to a
result is usually less than proving that a deterministic program computes a
result
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result is usually less than proving that a deterministic program computes a
result
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Scaling up?

▶ Sorry, not yet
▶ CompCert has scaled up enough to be a commercial product
▶ I’m interested in making sure that:

▶ the proofs generated are small
▶ the proofs are fast to produce and to check
▶ they rely on a minimum of supporting material
▶ “I paid the price so you don’t have to”: provide generous affordances for

inefficient proofs e.g. ATP
▶ use an “embeddable logic” so that it is compatible with many targets

▶ I am often concerned by academic projects that do a thing but clearly aren’t
designed to scale 100x, because that’s where the market actually is
▶ ...Then again, I’m a small fish in a big pond: MMC is basically vaporware by

comparison to Dafny, Why3, Verus, Lean, Bedrock
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Conclusion

▶ Tegmark and Omohundro have some interesting ideas, many of which line up
with my grand visions of the world

▶ but some of the goals and methods to achieve the goals look too naive
▶ In a way it doesn’t matter, the intermediate goals are hugely useful anyway
▶ The performance issues of ML are standing in the way of the singularity in a

very literal sense
▶ Pivoting from pure ML to MI-based programs makes it much more practical

to use ML training in resource constrained environments like ITP users’
laptops or ATP splitting heuristics

▶ Verified compilation is a practical method for producing programs with
strong correctness properties. We need to work to make it more mainstream. I
don’t think we need “AI” here, just better languages
▶ But I won’t say no to a program that does my proof for me!
▶ . . . as long as it takes less time than me and doesn’t require me to sell my soul to

OpenAI
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