Carnegie Mellon University

TITITTITIIIS

MiniCTX: Neural Theorem
Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck

TI TIPS

Background

Current Lean Datasets:

e Competition problems: minif2f, ProofNet primarily offer standalone competition problems

e Mathlib4: LeanStep, LeanDojo

e Other context datasets: datasets like CoqgGym attempt to gather all possible data from the
internet, but this exhaustive approach risks data contamination.

Tactic Suggestion Tools:

e Tools like LeanCopilot and limLean are being developed to act as copilots for formal proofs.
e Take file contexts as inputs, which can include previous definitions, lemmas, and
human-written comment

Carnegie
Mellon
University

Background

Context-dependent proving: Current theorem-proving datasets (e.g., minif2f, proofnet) focus

on standalone problems

Exis‘ting Theorems and
Proofs

Troin (e.g., Mathlib)

Standalone test
theorem

mathd_numbertheory_132 :

2004 % 12 = @ :=

Exis‘timj Theorems and
Proofs
Ce.g. Mathlib)

£ New Formalization R

(e.g., Prime Number Theorem)

Dependent test
theorem

[New o(epin?tions, lemmasl "‘J square_neg (p : €) (c : R) :

Square p (-c) = Square p c :=

R) : Set C

Square (p : €) (c :

K
Traditional C .
. arnegie
LLM o hoV?nﬂ Context-depe_nde_n‘t proving Mello Ilg
University

MiniCTX benchmark

Each theorem in miniCTX is accompanied by the following data, formatted in JSON:

1. Theorem statement,

2. Preceding file contents up to the theorem statement,
3. Metadata, including:

(a) File name,

(b) Project commit and version,

(c) Commit at which the theorem and its file was added,

(d) Position of the theorem and number of premises preceding it,

(e) Proof length and type,

(f) Whether the statement or proof uses new definitions or lemmas from the file or

repository.

Carnegie
Mellon
University

MiniCTX benchmark

import Mathlib.Data.Real.Basic

/-1

Square function

We define the squaring function s : R - R’ to be
=/

def s (x : R) & R := x * X

lemma s_eq_pow_two {x : R} : s x = x N 2 := by

rw [s, pow_two]

Original Lean File

‘s

b,

"srcContext": "import Mathlib.Data.Real.Basic\n\n/-!\n# Square function\nWe define the squaring f+
"theoremStatement": "lemma s_eq_pow_two {x : R} : s x = x N 2",

"theoremName": "s_eq_pow_two",

"fileCreated": "(git commit)",

"theoremCreated": "(git commit)",

"file": "(file name)",

"positionMetadata": {
"lineInFile": 10,
"tokenPositionInFile": 152,
"theoremPositionInFile": 1

i

"dependencyMetadata": {
"inFilePremises": true,
"repositoryPremises": false

i,

"proofMetadata": {
"hasProof": true,
"proof": "by\n xw [s, pow_two]",
"proofType": "tactic",
"prooflLengthlLines": 2,
"prooflLengthTokens": 20

miniCTX problem

Carnegie
Mellon
University

MiniCTX benchmark

Sources:

e Prime Number Theorem Split
o Contains theorems related to “rectangle”, capturing newly defined concepts and related operations
e PFR (Polynomial Freiman-Ruzsa) Split:
o Captures challenging, long proofs with extensive in-file and cross-file dependencies
e Recent Mathlib Split:
o Represents a popular library environment
e HTPI (How to Prove It) Split:
o Derived from a textbook environment, combining definitions, sample lemmas, and exercises

Split Problems Avg. Context Length (tokens) Avg. Proof Steps

miniF2F [[6]] Valid/Test 488 153%* 3.0%*
Prime 87 10,630 3.6
PFR 54 17,495 2l C

miniCTX Mathlib 50 14,440 6.1 1
HTPI 185 39,050 10.7%3 arneg 1€
All 376 26,106 10.9 Mellon

University

Why miniCTX?

1. Context-dependent proving

2. Generalization: evaluate models generalization ability from different levels:
o Theorem-Level: the proof must not occur in the model's training data
o Context-Level: the context and proof must not occur in the training data
o Project-Level: the entire repository must not occur in the training data.

3. Active Updates: miniCTX is designed as a dynamic benchmark that can be updated

regularly using our automated annotation and extraction toolkit.

Carnegie
Mellon
University

Baselines

1.

2,

3.
4.

File-Tuning (trained on mathlib):

o Input: context information + current state

o Output: next tactic
State-Tactic Tuning:

o Input: current state

o Output: next tactic

GPT-40 (with and without context)

Llemma-7b

Proof State
from Lean

)

J

Next step
(tactic")

)

State-tactic
'runing

Fle context
(New dePinitions, lemmas,]

[New theorem to prove)
[Proof so far]

+

Proof State
from Leon

|

Next step
(tactic

Fle Tuning

Carnegie
Mellon
University

Performance Comparison

File aware methods consistently outperformed other baseline methods across all splits

MiniF2F MiniCTX

Models Test Prime PFR Mathlib HTPI Avg.

GPT-40 (full proof) - 1.15% 5.56% 2.00% 9.73% 3.59%

GPT-40 (+ context) - 13.79% 1.85% 18.00% 31.89% | 22.07% |

State-tactic prompting | 28.28% 19.54% 5.56% 16.00% 19.15% | 20.61%

State-tactic tuning 32.79% 11.49% 5.56% 22.00% 5.95% 9.31%

File tuning 33.61% | 32.18% 5.56% 34.00% 38.38% | 31.65% |

Table 2: Performance comparison of different models on MiniF2F and MiniCTX.

Carnegie
Mellon

University

10

Performance Comparison

File-tuning especially helps on problems with dependencies

Performance on theorems by dependency type
45.45

[Context-dependent
I File Tuning

mmm State-Tactic Tuning
40 |

w
o
s

24.24

Performance (%)

20 1

11.54

10 A

0.00
Competition Problems No Infile Definition Theorem Definition and Theorem
(miniF2F) Dependency Dependency Dependency Dependency C o
Figure 3: Performance partitioned by dependency type. File-tuned models substantially outperform arnegle
state-tactic tuned models on theorems with definition and/or theorem dependencies. Mell()n

University

11

Interesting Findings

Some definition dependencies can be handled given access only to the proof state

Performance on theorems by dependency type
4545 [Context-dependent
B File Tuning

i 39.39 mmm State-Tactic Tuning
~ 30 4
£
[}
E 24.24
£
't 20
&

11.54
10
6.06
ol 0.00
Competition Problems No Infile Definition Theorem Definition and Theorem
(miniF2F) Dependency Dependency Dependency Dependency
C ‘
Figure 3: Performance partitioned by dependency type. File-tuned models substantially outperform arneg 1€
state-tactic tuned models on theorems with definition and/or theorem dependencies. Mellon

University

12

Interesting Findings

1. Some definition dependencies can be handled given access only to the proof state

2. Definitions and theorems in the context are both important.
3. Pass rate was similar without proofs in the context (but different sets of solved problems)

Context Type Accuracy (%)

No Context 17.02

Imports & Definition 29,19

Theorems 38.29

No proof 46.81

All 46.81

Table 3: Ablating components of the context. .
Carnegie
Mellon
- University

13

Toolkit and Resources

NTP-Toolkit: based on Kim Morrison's work, is designed for extracting and annotating data from
Lean source code

e Easily extract the data with annotations by running: python scripts/extract_repos.py --cwd
{path_to_repo} --config {path_to_config_file} --training_data
e Convertinto instruction-tuned data

¢ ntp-toolkit

This repository is a modified version of Kim Morrison's lean-training-data.

We provide tools for extracting training data based on Lean source code, and for creating instruction-tuning data for]
language models.

Running extraction

To run the full pipeline on all repositories in a config file in the configs directory:

on scripts/extract_repos.py --cwd {filepath_of this_repo} --config {filepath of config file} [flags (%)

A

>

The flags that can be set to indicate which processes to run are:

ing_data : This outputs to the TacticPrediction directory
ing_data : This outputs to the Fullproof directory
tputs to the Premises directory

L
This outputs to the statecomments directory C arnegle

ing_data_states : This outputs to the FullProofWithstates directory

.
® —-training_data_with_premises : This outputs to the TrainingDataWwithPremises directory Mellon
. y . . . ° .

Toolkit and Resources

REPL-Wrapper: a Python wrapper for the Lean REPL

14

ntp-mathlib-instruct-context Dataset: extracted and converted instruction-tuned data from

mathlib using our toolkit

repl_wrapper.py

The evaluation code interacts with the Lean compiler using the Lean REPL. repl_wrapper.py provides a Python
interface to interact with the Lean REPL directly.

Usage

Create a new thread by calling InteractiveThread(thread_id, repl path, lean_env_path) , where:

® thread_id : Any number
® repl_path : The path to the REPL directory

® lean_env_path : The path to the Lean project containing the environment you want to test

Example:

from repl_wrapper import InteractiveThread

thread = InteractiveThread(1, repl_path, lean_env_path)
thread. start()

cmd = {'cmd’: import MiniF2F.Minif2fImport\n open BigOperators Real Nat Topology'}
output = thread.submit_and_receive(cmd)

thread. close()
thread. join()

thread.submit_and_receive takes a dictionary as input and returns the output of the REPL in a dictionary.

Text

Dataset card

BB Dataset Viewer

Split (3)
train - 583k rows

tactic_predition

tactic_predition

tactic_predition

tactic_predition

tactic_predition

ntp-mathlib-instruct-context @ ©like

o json

Viewer

prompt

/- You are proving a theorem in

given the following information:

/- You ate proving a theorem in

given the following information:

/- You are proving a theorem in

given the following information:

/- You are proving a theorem in

given the following information:

/- You are proving a theorem in

given the following information:

/- You are proving a theorem in

100K - 1M

Files and versions

Community

Lean 4. You are
- The file..

Lean 4. You are
The current.

Lean 4. You are
- The file..

Lean 4. You are
- The current..

Lean 4. You are
The file..

Lean 4. You are

theorem-proving ~ math lean

Settings

<> API Embed

prompt_name
string

context_state_tactic

state_tactic

context_state_tactic

state_tactic

context_state_tactic

Datasets

B3 View in Dataset Viewer

completion

string

obtain (k, £, g,
obtain (k, f, g,
use k, £, g [/T.

use k, £, g [/T.

w [MonoidHom.m
MonoidHom.map_i

1w [MonoidHom.m ¥

Carnegie
Mellon

Universi

15

Contributions

1. miniCTX benchmark: first benchmark aimed at the real-world theorem proving

2. Ntp-toolkit: automate the extraction and annotation of theorem-proving data

3. Lean REPL Wrapper: Lean REPL wrapper to simplify interactions with Lean

4. File-Tuning: a strong baseline method for training models using full file contexts

5. ntp-mathlib-instruct-context Dataset: training data that includes in-file context information

Carnegie
Mellon
University

Next Step

1. Extend the benchmark to areas beyond math:
e program verification: Formal Proof and Verification by Brown University
e scientific computing: SciLean

2. Evaluate premise selection

3. Crossfile: add new splits for crossfile dependency

16

Carnegie
Mellon
University

