
miniCTX: Neural Theorem 
Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck



2
2
2

2

Background

Current Lean Datasets:

● Competition problems: minif2f, ProofNet primarily offer standalone competition problems
● Mathlib4: LeanStep, LeanDojo 
● Other context datasets: datasets like CoqGym attempt to gather all possible data from the 

internet, but this exhaustive approach risks data contamination.

Tactic Suggestion Tools:

● Tools like LeanCopilot and llmLean are being developed to act as copilots for formal proofs.
● Take file contexts as inputs, which can include previous definitions, lemmas, and 

human-written comment



3
3
3

3

Background

Context-dependent proving: Current theorem-proving datasets (e.g., minif2f, proofnet) focus 

on standalone problems



4
4
4

4

miniCTX benchmark

Each theorem in miniCTX is accompanied by the following data, formatted in JSON:
1. Theorem statement,
2. Preceding file contents up to the theorem statement,
3. Metadata, including:

(a) File name,

(b) Project commit and version,

(c) Commit at which the theorem and its file was added,

(d) Position of the theorem and number of premises preceding it,

(e) Proof length and type,

(f) Whether the statement or proof uses new definitions or lemmas from the file or
repository.



5
5
5

5

miniCTX benchmark

Original Lean File

miniCTX problem



6
6
6

6

miniCTX benchmark

Sources:
● Prime Number Theorem Split

○ Contains theorems related to “rectangle”, capturing newly defined concepts and related operations
● PFR (Polynomial Freiman–Ruzsa) Split: 

○ Captures challenging, long proofs with extensive in-file and cross-file dependencies
● Recent Mathlib Split: 

○ Represents a popular library environment
● HTPI (How to Prove It) Split: 

○ Derived from a textbook environment, combining definitions, sample lemmas, and exercises



7
7
7

7

Why miniCTX?

1. Context-dependent proving

2. Generalization: evaluate models generalization ability from different levels:

○ Theorem-Level: the proof must not occur in the model’s training data

○ Context-Level: the context and proof must not occur in the training data

○ Project-Level: the entire repository must not occur in the training data.

3. Active Updates: miniCTX is designed as a dynamic benchmark that can be updated 

regularly using our automated annotation and extraction toolkit.



8
8
8

8

Baselines

1. File-Tuning (trained on mathlib): 

○ Input: context information + current state

○ Output: next tactic

2. State-Tactic Tuning:

○ Input: current state

○ Output: next tactic

3. GPT-4o (with and without context)

4. Llemma-7b



9
9
9

9

Performance Comparison

File aware methods consistently outperformed other baseline methods across all splits



10
10
10

10

Performance Comparison

File-tuning especially helps on problems with dependencies



11
11
11

11

Interesting Findings

1. Some definition dependencies can be handled given access only to the proof state



12
12
12

12

Interesting Findings

1. Some definition dependencies can be handled given access only to the proof state

2. Definitions and theorems in the context are both important.

3. Pass rate was similar without proofs in the context (but different sets of solved problems)



13
13
13

13

Toolkit and Resources

NTP-Toolkit: based on Kim Morrison's work, is designed for extracting and annotating data from 
Lean source code
● Easily extract the data with annotations by running: python scripts/extract_repos.py --cwd 

{path_to_repo} --config {path_to_config_file} --training_data
● Convert into instruction-tuned data



14
14
14

14

Toolkit and Resources

REPL-Wrapper: a Python wrapper for the Lean REPL
ntp-mathlib-instruct-context Dataset: extracted and converted instruction-tuned data from 

mathlib using our toolkit



15
15
15

15

Contributions

1. miniCTX benchmark: first benchmark aimed at the real-world theorem proving

2. Ntp-toolkit: automate the extraction and annotation of theorem-proving data

3. Lean REPL Wrapper: Lean REPL wrapper to simplify interactions with Lean

4. File-Tuning: a strong baseline method for training models using full file contexts

5. ntp-mathlib-instruct-context Dataset: training data that includes in-file context information



16
16
16

16

Next Step

1. Extend the benchmark to areas beyond math:
● program verification: Formal Proof and Verification by Brown University
● scientific computing: SciLean

2. Evaluate premise selection
3. Crossfile: add new splits for crossfile dependency


