
The Last Mile
How do we make AI theorem provers

which work in the real world for real users
and not just on benchmarks?

Jason Rute
IBM Research / MIT-IBM Watson AI Lab

AI Generated Image (ImageFX)



Disclaimers

● This talk is intentionally provocative

● The opinions are my own, not those of my employer or co-authors

● The ideas are not necessarily novel, and others have said them before

● I could be wrong about the solutions … or even the problems

● I'm one of the worst offenders

● I started working on these slides yesterday

● …but I've been thinking about this stuff for a long while!
AI Generated Image (ImageFX)



AI solves 48%+ of HOL/Lean/Isabelle library theorems
 

 

 

 

 

 

 

 



AI can solve competition math problems



Code assistants are becoming quite popular and good

Suggest Code Edit Code Chat



Why don't we have AI assistants for real ITP users?

● Yes we have hammers.
● But why don't we have more?
● Why hasn't the feedback to Lean Copilot, LLMLean, Tactician, CoqPilot, etc 

been positive?
● Is it because the technology is not good enough yet?

● Claim: The technology is basically good enough, but we aren't building the 
right sorts of assistants.



The Last Mile

AI Generated Image (ImageFX)



Problems



Parties involved
Users

Novice Expert

Startups

ITP Governing Bodies

AI Labs

Industry Academia



User Stories: Figuring out what users want

● Alice is a new ITP user. She is confused where to start. She is very frustrated 
that she can't even prove that (xy + yz) / y = x + z.  She wants her code editor 
to suggest next steps, and maybe also a built-in chat bot.

● Bob is an ITP power user.  He can prove 10 lemmas before breakfast, but 
there is so much work to do!  He wants tools to make him 10x more efficient.  
This includes proof automation, but also general purpose coding support.

● Catherine is working on a long term formalization project.  She wants tools 
which will run overnight on a server, closing simple goals, learning from the 
current code base, and even formalizing parts of her LaTeX blueprint.

● Doug is a mathematician exploring new ideas in his field.  He is formatting 
conjectures that he would love to be able to prove or disprove automatically 
with AI.  He is willing to be a guinea pig, partnering with AI experts.



User experience shouldn't take backdoor to benchmarks

Bad UX (Inconvenience > Benefit)

Researchers open sourced their 
SoTA model and interface code.  The 
installation is a huge pain, so much 
that most never try it.  They provide a 
model to run locally.  It heats up the 
laptop and barely solves anything in 
a minute.  They also provide a way to 
use an LLM API, but one can quickly 
rack up $100 in cost in the first day.  
No one adopts it.

Good UX (Benefit > Inconvenience)

An ITP ships an AI assistant as part of 
the standard setup of its system.  It is 
easy to setup with good docs and tech 
support.  It's been designed with user 
experience in mind.  It is far from 
SoTA, but it provides good, 
unobtrusive advice when it works.  To 
entice users, there is a free web 
version to try it out, and the ITP power 
users and maintainers advertise it.



ITP Benchmarks are All Broken

● Library theorems
○ Practical Real-world proofs
○ Difficult to compare different AIs
○ Can easily be memorized by LLMs
○ Unrealistic random split of the library

● Mini-F2F
○ Cross platform
○ Problems avoid practical concerns
○ LLM data leakage is a concern
○ Has become a "target" a la Goodhart's law

● IMO Grand Challenge
○ Great for measuring SoTA
○ Little to do with typical ITP experience

● End result: We don't know what works

● What is missing from benchmarks?
○ Real ITP problems that users want AI to do
○ Program verification
○ Participation of symbolic AI (e.g. Hammers)
○ Participation of practical ITP AI systems
○ LLM-memorization resistant problems
○ Regular new problems (annually?)
○ Tracking of computational resources used
○ Good plan for cross platform benchmarks
○ Benchmarks other than solving theorems
○ Better versioning and governance



Lack of Communication

● AI researchers and ITP maintainers don't coordinate enough
○ This leads to reinventing the wheel
○ AI systems can't be incorporated into real world systems
○ AI experiments are done on forked version of the ITP

● Startups and ITP maintainers don't coordinate enough
○ Startups just drop stuff

● Symbolic AI and Neural AI researchers don't coordinate enough
○ AI papers consistently beat Hammers on AI paper benchmarks, but no response from 

Hammer folks
○ No common benchmarks by neural and symbolic AI folks
○ Lean is still investing a lot into building a Hammer

● Almost no one is communicating with users
○ Users should be more involved in making of AI benchmarks
○ User experience should be front and center in design of AI tools



How Research Papers "Cheat"

● Use ridiculous amounts of compute for training and inference

● Precompute and hard-code lemmas for lemma selection

● Training data is unrealistically close to test data (random split)



Technical Challenges and Shortcuts

● How do we keep lemma selection database up-to-date
○ Continual retraining (e.g. in CI)
○ Online updates

● Do I host model locally on machine or in the cloud via and API?
○ API is easier and more powerful, but expensive
○ Local isn't at mercy of developer

● How to make an easy-to-install system?
● How to keep an AI system up-to-date as the library changes?

○ Online learning and/or lemma selection? (Hammer, Tactician, Graph2Tac, Reprover, miniCTX)
○ Continual retraining?

● Incorporate proof search (usually done with tactics) with surrounding code 
(usually done in the editor)



Proposed Solutions



Principles

● If you have a vision, build it!
● Start simple, get user feedback, and improve
● Advertise your system a lot
● Focus on the user experience first and foremost
● Don't let perfect be the enemy of good enough
● Measure progress
● Push all common components back into common tools

○ Language agnostic stuff shouldn't be tied to a specific ITP
○ Model agnostic stuff (like search) shouldn't be tied to a particular model

● Don't pigeonhole yourself
● Rapid improvement



Hammers

● Hammers work in practice!
● Isabelle, Coq, and (soon) Lean have them
● Need engagement between Neural AI and Hammer 

folks
○ Are the current hammer benchmarks good?
○ What do hammer folks think of neural AI tools?

● What has made hammers so successful that other 
AI tools can learn from?



Lemma Selection

● Universal feature
○ Used in hammers
○ Used in retrieval augmented generation

● ITPs need to solve how to do vector lookup of 
premises from the library

○ How to make efficient (speed and memory)
○ How small of embeddings can you have
○ How to precompute embeddings during CI
○ How to bulk compute embeddings for a local project
○ How to compute embeddings on the fly for new theorems
○ Should it be done in pure OCaml/C++/Lean or in a neural 

network?



Magnus Hammer

SledgeHammer

Library Selected
Lemmas

External
ATP

Required
Lemmas

Lemma 
Selection

Reconstruction 
Tactics

Goal

Proof

Magnus Hammer

Library Lemma 
Selection

Reconstruction 
Tactics

Goal

ProofSelected
Lemmas



k-NN (TacticToe, HOList, Tactician)

● Record hand-crafted features for each proofstate-goal paper
● Use k-NN to look up closest proofstates
● Copy those tactics (verbatim)
● Tree search with selected tactics
● (Optional) Use online k-NN to take into account recent information
● (Optional) Use locality sensitive hashing forest to search over all tactics

● Works much better than you think!
● Should be a standard baseline in all AI for TP papers!
● Can be written (mostly) as a pure tactic. 



Code assistants

● We should test and benchmark general purpose coding assistants like we 
do ITP specific tools.

● Do they help with day-to-day tasks?
● What are they good and not good at?
● Where do they fail?
● What community advice do we have for better prompting?



Need practical benchmarks

● We need benchmarks for real world theorem provers
● Need to benchmark real systems on real hardware on real problems
● Should benchmark:

○ Built-in general purpose tactics
○ Hammers
○ Code assistant models
○ ITP specific tools

● Every practical tool should be measured on two criteria:
○ User feedback
○ Benchmarks

● If these aren't aligned, we need to modify the benchmarks
● ITP users should be actively involved in making real benchmark problems



Some things I like: "Try this:" in Lean

● Click on tactic to replace tactic call with code
● User-centric feature
● Common tool available to other tactics
● Used in:

○ Standard Mathlib tactics
○ Aesop
○ Lean Copilot
○ LLMLean



Some things I like: Aesop

● Highly customizable search in Lean
● Available for other AI tools
● Used by Lean Copilot
● Easy to hook up your AI model to a Lean proof search



Some things I like: Moogle.ai



Proposal: ITP AI Influencer

● Figures out what ITP users really want out of AI systems
● Collects benchmark problems
● Benchmarks current systems in real world settings
● Advocates for development of common technologies and interfaces useful to 

many AI systems so don't need to reinvent the wheel
● When new AI systems comes out:

○ Advertises them
○ Gives honest assessments of their strengths and weaknesses and use cases
○ Collects user feedback
○ Works with system maintainers and ITP maintainers to upstream common useful components
○ Works with system maintainers to make the next interaction better


