The Last Mile

How do we make Al theorem provers
which work in the real world for real users
and not just on benchmarks?

Jason Rute
IBM Research / MIT-IBM Watson Al Lab

Al Generated Image (ImageFX)



Disclaimers

e This talk is intentionally provocative
e The opinions are my own, not those of my employer or co-authors
e The ideas are not necessarily novel, and others have said them before

e | could be wrong about the solutions ... or even the problems

e ['m one of the worst offenders

e | started working on these slides yesterday

e ...butI've been thinking about this stuff for a long while!



Al solves 48%+ of HOL/Lean/Isabelle library theorems

On_a single CPU. with a time limit

7]
G

Model

4-hop GNN, sub-expression sharing
Graph Representations for HOL

f 60 seconds, TacticToe proves 66.4% (of the
Praved brary, whereas E prover with auto-schedule
49.95% 1 169.0% by combining the results of TacticToe

al Paliwal et al 2019
arxiv Model Proved
Human Explore -
Learning to Reason in Large Theories SR
without Imitation
Bansal et al 2020 Model Proved
arxiv Zero Explore 56.31%
Learning to Reason in Large Theories
formalized M — ' - ' — ~h a neural theorem prover
. roof rate .
driven by aT B:u; 033 : ™) PACT improves theorem
Method random [ C°| TF-IDF 31.8 from 32% ta 48%.
: OpenAl embed. (Neelakantan et al., 2022) 36.1
tidy 23.8 Sledgehammer 38.3
GPT-4 20.0 Magnushammer (ours) 59.5
Ref/ jo‘fe‘;r(lo‘jg) Z%’é LISA (Jiang et al., 2021) 33.2
0 © : Thor (Jiang et al., 2022a) 57.0
Thor + Magnushammer (ours) 71.0




can solve competition math problems

65

60

Pass Rate (%)
N w w > = (4]
w [ w (=] w (=]

13>}
o

mmm DeepSeek-Prover-V1.5 mmm DeepSeek-Prover-V1
mmm  InternLM2-StepProver mmm Hypertree Proof Search

miniF2F-test (fine-tuned)

miniF2F-test (pre-trained)

mm GPT-
mmm ReProver mm Llemma-34B

f m [lemma-7B

Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JULY 2024

AlphaProof and AlphaGeometry teams

< Share




Code assistants are becoming quite popular and good

Suggest Code Edit Code Chat

@dataclasses.dataclass

class TreeNode: Make tail recursivel What is tail recursion?
val: int
left: 'TreeNode' = None
right: 'TreeNode' = None class lreeNoae:

Submit Codestral v

e leses(eeil) = s P Al ot (o e Tail recursion is a specific form of

R Ghe Leer vElES 6f e areaiit = ], Tyt Dl vl mgms oD ooy, =gy DT recursion where the recursive call
Accept All (3854 <) | Reject All (384®) | Accept (C3Y) | Reject (\C#N) | 381 to add instructions iS the ﬁnal operation in the
def leaves(self, acc=None) —> list: function. In other words, there is no
ST T e VRS 0 e .
ind the leaf vatues of the tree need to perform any additional
Accept | Reject
operations after the recursive call.
This property allows tail recursion
to be optimized by some compilers
if acc is None: .
aee = [ to use constant stack space, which
if self.left is None and self.right is None: isa significant advantage over
acc.append(self.val) . i
else: regular recursion, which can lead to
1 self. left: stack overflow errors for large
Accept | Reject
inputs.
self.left. leaves(acc)

if self.right: ’ . .
Accept | Reject Here's a simple example of a tail

recursive function in Python:



Why don't we have Al assistants for real ITP users?

e Yes we have hammers.

e But why don't we have more?

e \Why hasn't the feedback to Lean Copilot, LLMLean, Tactician, CogPilot, etc
been positive?

e Is it because the technology is not good enough yet?

e Claim: The technology is basically good enough, but we aren't building the
right sorts of assistants.



The Last Mile

Staek Usens




Problems



Parties involved

Users ITP Governing Bodies

Novice

Industry Academla



User Stories: Figuring out what users want

Alice is a new ITP user. She is confused where to start. She is very frustrated
that she can't even prove that (xy + yz) / y = x + z. She wants her code editor
to suggest next steps, and maybe also a built-in chat bot.

Bob is an ITP power user. He can prove 10 lemmas before breakfast, but
there is so much work to do! He wants tools to make him 10x more efficient.
This includes proof automation, but also general purpose coding support.

Catherine is working on a long term formalization project. She wants tools
which will run overnight on a server, closing simple goals, learning from the
current code base, and even formalizing parts of her LaTeX blueprint.

Doug is a mathematician exploring new ideas in his field. He is formatting
conjectures that he would love to be able to prove or disprove automatically
with Al. He is willing to be a guinea pig, partnering with Al experts.




User experience shouldn't take backdoor to benchmarks

Bad UX (Inconvenience > Benefit)

Researchers open sourced their
SoTA model and interface code. The
installation is a huge pain, so much
that most never try it. They provide a
model to run locally. It heats up the
laptop and barely solves anything in
a minute. They also provide a way to
use an LLM API, but one can quickly
rack up $100 in cost in the first day.
No one adopts it.

Good UX (Benefit > Inconvenience)

An ITP ships an Al assistant as part of
the standard setup of its system. It is
easy to setup with good docs and tech
support. It's been designed with user
experience in mind. It is far from
SoTA, but it provides good,
unobtrusive advice when it works. To
entice users, there is a free web
version to try it out, and the ITP power
users and maintainers advertise it.



ITP Benchmarks are All Broken

o O O O

o O O O

(@)

(@)

Library theorems

Practical Real-world proofs

Difficult to compare different Als

Can easily be memorized by LLMs

Unrealistic random split of the library
Mini-F2F

Cross platform

Problems avoid practical concerns

LLM data leakage is a concern

Has become a "target" a la Goodhart's law

IMO Grand Challenge

Great for measuring SoTA
Little to do with typical ITP experience

e End result: We don't know what works

e \What is missing from benchmarks?

O 0 0o 0o o o o o o o

Real ITP problems that users want Al to do
Program verification

Participation of symbolic Al (e.g. Hammers)
Participation of practical ITP Al systems
LLM-memorization resistant problems
Regular new problems (annually?)
Tracking of computational resources used
Good plan for cross platform benchmarks
Benchmarks other than solving theorems
Better versioning and governance



Lack of Communication

e Al researchers and ITP maintainers don't coordinate enough
o This leads to reinventing the wheel
o Al systems can't be incorporated into real world systems
o Al experiments are done on forked version of the ITP
e Startups and ITP maintainers don't coordinate enough
o Startups just drop stuff

e Symbolic Al and Neural Al researchers don't coordinate enough
o Al papers consistently beat Hammers on Al paper benchmarks, but no response from
Hammer folks
o No common benchmarks by neural and symbolic Al folks
o Lean is still investing a lot into building a Hammer

e Almost no one is communicating with users

o Users should be more involved in making of Al benchmarks
o User experience should be front and center in design of Al tools



How Research Papers "Cheat”

e Use ridiculous amounts of compute for training and inference

e Precompute and hard-code lemmas for lemma selection

e Training data is unrealistically close to test data (random split)



Technical Challenges and Shortcuts

e How do we keep lemma selection database up-to-date

o  Continual retraining (e.g. in CI)
o  Online updates

e Do I host model locally on machine or in the cloud via and API?
o APl is easier and more powerful, but expensive
o Local isn't at mercy of developer

e How to make an easy-to-install system?
e How to keep an Al system up-to-date as the library changes?

o Online learning and/or lemma selection? (Hammer, Tactician, Graph2Tac, Reprover, miniCTX)
o  Continual retraining?

e Incorporate proof search (usually done with tactics) with surrounding code
(usually done in the editor)



Proposed Solutions



Principles

If you have a vision, build it!

Start simple, get user feedback, and improve
Advertise your system a lot

Focus on the user experience first and foremost
Don't let perfect be the enemy of good enough
Measure progress

Push all common components back into common tools

o Language agnostic stuff shouldn't be tied to a specific ITP
o Model agnostic stuff (like search) shouldn't be tied to a particular model

Don't pigeonhole yourself
Rapid improvement



Hammers

e Hammers work in practice!

e |sabelle, Coq, and (soon) Lean have them

e Need engagement between Neural Al and Hammer
folks

o Are the current hammer benchmarks good?
o  What do hammer folks think of neural Al tools?

e \What has made hammers so successful that other
Al tools can learn from?




Lemma Selection

e Universal feature

(@)

(@)

Used in hammers
Used in retrieval augmented generation

e |TPs need to solve how to do vector lookup of
premises from the library

(@)

o O O O O

How to make efficient (speed and memory)

How small of embeddings can you have

How to precompute embeddings during CI

How to bulk compute embeddings for a local project

How to compute embeddings on the fly for new theorems
Should it be done in pure OCaml/C++/Lean or in a neural
network?



MAGNUSHAMMER: A TRANSFORMER-BASED

APPROACH TO PREMISE SELECTION

Maciej Mikuta* Szymon Tworkowski* Szymon Antoniak*
Magnus Hammer e el Wl
Bartosz Piotrowski ~ Albert Qiaochu Jiang Jin Peng Zhou Christian Szegedy
GO al IDEAS NCBR University of Cambridge Cornell Universityi
SledgeHammer e R bk
Libra Lemma Selected | External | Required Reconstruction | Proof
ry Selection Lemmas ATP Lemmas Tactics
Magnus Hammer/ Goal —
Library Lemma Selected Reconstruction Proof
Selection Lemmas o . Tactics
b 4
~ 50 xa""x’x
§ 40 xa\"x
j‘; 30 | % L A A
£ 20 i;)Ll““LA
» & Eldgbammar
10 ™ ; BM25

0 100 200 300 400 500 600 700 800
Compute Budget




K-NN (TacticToe, HOList, Tactician)

Record hand-crafted features for each proofstate-goal paper

Use k-NN to look up closest proofstates

Copy those tactics (verbatim)

Tree search with selected tactics

(Optional) Use online k-NN to take into account recent information
(Optional) Use locality sensitive hashing forest to search over all tactics

Works much better than you think!
e Should be a standard baseline in all Al for TP papers!
Can be written (mostly) as a pure tactic.



Code assistants

e We should test and benchmark general purpose coding assistants like we
do ITP specific tools.

Do they help with day-to-day tasks?

What are they good and not good at?

Where do they fail?

What community advice do we have for better prompting?



Need practical benchmarks

We need benchmarks for real world theorem provers

e Need to benchmark real systems on real hardware on real problems
Should benchmark:

o Built-in general purpose tactics
o Hammers

o Code assistant models

o ITP specific tools

e Every practical tool should be measured on two criteria:
o User feedback
o Benchmarks

If these aren't aligned, we need to modify the benchmarks
e |TP users should be actively involved in making real benchmark problems



Some things I like: "Try this:" in Lean

e Click on tactic to replace tactic call with code
e User-centric feature
e Common tool available to other tactics
e Usedin: : Injective f
. . R R (PRGN T
o Standard Mathlib tactics
o Aesop v LLMLean suggestions
o Lean Copilot Try this:
o LLMLean e




Some things | like: Aesop

Highly customizable search in Lean

Available for other Al tools

Used by Lean Copilot

Easy to hook up your Al model to a Lean proof search



Some things I like: Moogle.ali

Moogle

the measure of the union of two disjoint sets is the

sum of their measures

MeasureTheory.measure_union

theorem MeasureTheory.measure_union {a : Type u_1} {m

(h : MeasurableSet s2)
ttd (S1 U S2) = 11 S1 + 1T1ld S2

» Source Code

Mathlib/MeasureTheory/Measure/MeasureSpace.lean 4

MeasureTheory.measure_union'

theorem MeasureTheory.measure_union' {o : Type u_1} {m

{u : MeasureTheory.Measure a} {si1 : Set a} {s2 :

(h : MeasurableSet s1)

21110 (g1 U S5) = 1111 S1 + 1111 S»

! MeasurableSpace a}
{u : MeasureTheory.Measure a} {si1 : Set a} {sz :

Set a} (hd : Disjoint si s2)

! MeasurableSpace a}

Set a} (hd : Disjoint si1 s2)



Proposal: ITP Al Influencer

Figures out what ITP users really want out of Al systems

Collects benchmark problems

Benchmarks current systems in real world settings

Advocates for development of common technologies and interfaces useful to
many Al systems so don't need to reinvent the wheel

When new Al systems comes out:

Advertises them

Gives honest assessments of their strengths and weaknesses and use cases

Collects user feedback

Works with system maintainers and ITP maintainers to upstream common useful components
Works with system maintainers to make the next interaction better

o O O O O



