
Exploring Metamath Proof Structures

Christoph Wernhard 1 Zsolt Zombori 2
1University of Potsdam 2Alfréd Rényi Institute of Mathematics and Eötvös Loránd University

AITP 2024
Aussois, September 4, 2024

1

Introduction

We Investigate Ways of Structuring Proofs by Lemmas, Relating Two Aspects
1. Practice by humans for formalized proofs

Metamath: 42,500 proven theorems
2. Mechanizable possibilitiesA tree compression algorithm: TreeRePair
Questions
Can we understand human practice as a form of structure compression?Can automated tools find structurings of interest that were overlooked by humans?

Our Approach is Driven by Proof Structures, in Contrast to Formulas
Nice technical foundation: condensed detachment, by Carew A. Meredith – mid 1950s
• Associates simple proof structures and formulas proven by them• Foundation of Metamath

2

Metamath

Simple and flexible computer-processable language for verifying, archiving, and presenting proofs
Contributors include Norman Megill (founder, since early 1990s), David A. Wheeler, Mario Carneiro
set.mm (Metamath Proof Explorer): mathematics from scratch, starting from ZFC set theory axioms
• Currently 42,500 proven theorems• A single text file (“database”)
Technical basis is substitution – or condensed detachment[Norman Megill: A Finitely Axiomatized Formalization of Predicate Calculus with Equality, 1995]
Not tied to any particular set of axioms, instead, axioms are defined in the database
Syntax is similarly defined via substitution rules in the database
Specification and introduction: Metamath book (available as free PDF)[Megill & Wheeler: Metamath – A Computer Language for Mathematical Proofs, 2nd ed., 2019]
Many tools support Metamath, instead of requiring a “canonical” tool
Ranks well in “Formalizing 100 Theorems”:Isabelle 90; HOL Light 87; Coq 79; Lean 76;Metamath 74; Mizar 69; nqthm/ACL2 45

3

Condensed Detachment (CD): Background

CD was invented by Carew A. Meredith in the mid 1950sCD problems were used a lot in ATP in the 1990s, e.g. by Larry WosSee [Dolph Ulrich: A Legacy Recalled and a Tradition Continued, 2001]

4

CD: Recently Aroused Interest

Background
Explicit proof structures in a simple and convenient form
Basis for fresh views on structure-oriented ATP (Prawitz, connection method, clausal tableaux),which operates by enumerating proof structures, constrained by unificication of associatedformulas

Recent CD-Related Efforts
Lemmas: proof structure as useful information forMachine Learning (unit lemmas)[Rawson, W, Z & Bibel TABLEAUX 2023], related AITP 2022-2024 contributions
Structure-driven provers: SGCD, solves LCL073-1 and gives a short proof of LCL038-1[Rawson, W, Z & Bibel TABLEAUX 2023], [W AReCCA 2023], [W & Bibel JAR 2024]
CCS integrates combinator compression into proof search[W PAAR 2022]
Abstract framework, reductions/regularities, relations with the connection method[W & Bibel CADE 2021; JAR 2024]
CD Tools – Implemented Prolog system with utilities, interfaces, provers and a Metamath interface
http://cs.christophwernhard.com/cdtools/ 5

http://cs.christophwernhard.com/cdtools/

The Metamath Interface of CD Tools

Written from scratch in SWI-Prolog, included in CD Tools
Formulas: Metamath’s sequence representation is parsed to termsYields the same first-order formulas as mm-hammer [Carneiro, Brown & Urban 2023]
Also proofs are translated to Prolog terms, with various options
• Raw form preserves Metamath’s compression through factorized terms• With and without Metamath’s syntax processing steps• Forms compatible with CD Tools, which offers utilities to process and reduce CD proofs
Prolog fact base generated from set.mm: 120 s; after compilation it loads in 0.5 s
Not yet addressed
• Disjoint variable conditions• Special handling for df-cleq, weq, wceq, wcel, df-clel, wel, ax-prv1 and ax-tgoldbachgt• Translation of proofs to Metamath format (requires introduction of syntax processing steps)

6

CD: A Technical First-Order Meta-Level Perspective

CD is traditionally used to establish completeness of axiomatizations of propositional logics,by reasoning on a first-order “meta-level”
• A single unary first-order predicate P, for provable (written ⊢ in Metamath)• Operators of the object logic are first-order function symbols, e.g. ⇒

∀pq [P(p ⇒ q) ∧ P(p) → P(q)] ∧ Detachment – a Horn clause
∀pqrsP((((p ⇒ q) ⇒ r) ⇒ ((r ⇒ p) ⇒ (s ⇒ p)))) Axiom Łukasiewicz

⊧ ∀pq P(p ⇒ (q ⇒ p)) ∧ Axiom Simp
∀pq P(((p ⇒ q) ⇒ p) ⇒ p) ∧ Axiom Peirce
∀pqr P((p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r))) Axiom Syll

Metamath goes further
• “Condensed generalization”: ∀px [P(p) → P(A(x, p))]• Syntax is handled with the same mechanism as proving

7

CD: Proof Terms (DG-Terms), The Proves Relation, The Most General Theorem (MGT)

Definition. The proves relation is defined inductively:
1. c proves Pσ if c is an axiom name with formula P
2. D(A,B) proves Qσ if A proves P ⇒ Q and B proves P
3. G(A) proves

A(x, P)σ if A proves P

If DG-term A proves some formula at all, then there is a most general formula P proven by A,called the most general theorem (MGT) of A
The MGT of a DG-term for an axiom assignment is unique up to renaming of variables
Type theory view: D is application, the MGT is the principal type

8

CD: Proof Terms (DG-Terms), The Proves Relation, The Most General Theorem (MGT)

Definition. The proves relation is defined inductively:
1. c proves Pσ if c is an axiom name with formula P
2. D(A,B) proves Qσ if A proves P ⇒ Q and B proves P
3. G(A) proves

A(x, P)σ if A proves P

Prolog View: Computing theMGT
mgt(c1, AxiomFormula1).
...
mgt(ck, AxiomFormulak).
mgt(d(A,B), Q) :-

mgt(A, (P=>Q)),
mgt(B, P).

mgt(g(A), forall(X,P)) :-
mgt(A, P).

Example
mgt(’ax-1’, (P=>(Q=>P))). % clause for axiom ax-1

?- mgt(d(’ax-1’, ’ax-1’), F).
F = (P=>(Q=>(R=>Q))).

9

The Horn MGT of a DG-Term with Variables

Definition. The Horn MGT of a DG-term A[v1, . . . , vn] with variables v1, . . . , vn is the most generalHorn clause (P1 ∧ . . . ∧ Pn) → Qs.t. for all σ it holds that if A1, . . . , An are DG-terms s.t.
A1 proves P1σ . . . An proves Pnσ, then A[A1, . . . , An] proves Qσ

Computing the Horn MGT
mgt(V, P) :-

var(V), !, V = P.
mgt(c1, AxiomFormula1).
...
mgt(ck, AxiomFormulak).
mgt(d(A,B), Q) :-

mgt(A, (P=>Q)),
mgt(B, P).

mgt(g(A), forall(X,P)) :-
mgt(A, P).

Example
?- mgt(d(’ax-1’, d(V, ’ax-1’)), F).
V = ((P=>(Q=>P))=>R),
F = (S=>R).

The Horn MGT ofD(ax-1,D(v, ax-1)) is the Horn clause
((p ⇒ (q ⇒ p)) ⇒ r) → (s ⇒ r).
?- mgt(’ax-1’, F).
F = (P=>(Q=>P)).
?- mgt(d(’ax-1’, d(’ax-1’, ’ax-1’)), F).
F = (P=>(Q=>(R=>(S=>R)))).

10

Horn Lemmas – DGH-Terms

Extending the Definition of proves.
1. c proves Pσ if c is an axiom name with formula P
2. D(A,B) proves Qσ if A proves P ⇒ Q and B proves P
3. G(A) proves

A(x, P)σ if A proves P
4. f (A1, . . . , An) proves Qθσ if f is a Horn lemma name with clause (P1 ∧ . . . ∧ Pn) → Qand A1 proves P1θ . . . An proves Pnθ

Case 4 could (theoretically) cover cases 1–3
1. f with arity 0
2. f with Horn clause ((p ⇒ q) ∧ p) → q

3. f with Horn clause p →

A(x, p)

In Metamath proofs, previously proven theorems appear as Horn lemma names

11

Metamath Proofs in Prolog Term Representation

MM> show proof a1i /lemmon /renumber
1 a1i.1 $e |- ph
2 ax-1 $a |- (ph -> (ps -> ph))
3 1,2 ax-mp $a |- (ps -> ph)

MM> show proof a2i /lemmon /renumber
1 a2i.1 $e |- (ph -> (ps -> ch))
2 ax-2 $a |- ((ph -> (ps -> ch)) -> ((ph -> ps) -> (ph -> ch)))
3 1,2 ax-mp $a |- ((ph -> ps) -> (ph -> ch))

MM> show proof mpd /lemmon /renumber
1 mpd.1 $e |- (ph -> ps)
2 mpd.2 $e |- (ph -> (ps -> ch))
3 2 a2i $p |- ((ph -> ps) -> (ph -> ch))
4 1,3 ax-mp $a |- (ph -> ch)

MM> show proof mpi /lemmon /renumber
1 mpi.1 $e |- ps
2 1 a1i $p |- (ph -> ps)
3 mpi.2 $e |- (ph -> (ps -> ch))
4 2,3 mpd $p |- (ph -> ch)

12

Translation to DGH-TermsProof macro Horn MGT
a1i(X) -> d(’ax-1’, X) p → (q ⇒ p)
a2i(X) -> d(’ax-2’, X) (p ⇒ (q ⇒ r)) → ((p ⇒ q) ⇒ (p ⇒ r))
mpd(X, Y) -> d(a2i(Y), X) [(p ⇒ q) ∧ (p ⇒ (q ⇒ r))] → (p ⇒ r)
mpi(X, Y) -> mpd(a1i(X), Y) [p ∧ (q ⇒ (p ⇒ r))] → (q ⇒ r)

Expansion to DG-Terms
a1i(X) -> d(’ax-1’, X)
a2i(X) -> d(’ax-2’, X)
mpd(X, Y) -> d(d(’ax-2’, Y), X)
mpi(X, Y) -> d(d(’ax-2’, Y), d(’ax-1’, X))

Some Statistics for set.mm

42,548 proven theoremsFor 10% the stated theorem is a strict instance of the Horn MGT of the (unexpanded) proofFor 59% the associated Horn clause has a non-empty bodyFully expanding the proofs to obtain a DG-term can yield quite large results, e.g. for peano5
• 1, 415 different theorems used in total• DG-term has 7.52e × 10

46 inner nodes, DAG representation has 42, 830 inner nodes

13

Proof macro Horn MGT
a1i(X) -> d(’ax-1’, X) p → (q ⇒ p)
a2i(X) -> d(’ax-2’, X) (p ⇒ (q ⇒ r)) → ((p ⇒ q) ⇒ (p ⇒ r))
mpd(X, Y) -> d(a2i(Y), X) [(p ⇒ q) ∧ (p ⇒ (q ⇒ r))] → (p ⇒ r)
mpi(X, Y) -> mpd(a1i(X), Y) [p ∧ (q ⇒ (p ⇒ r))] → (q ⇒ r)

Expansion to DG-term
mpd(X, Y) -> d(d(’ax-2’, Y), X)
mpi(X, Y) -> d(d(’ax-2’, Y), d(’ax-1’, X))

Correspondences – Ways to Understand these “Proof Macros”

Proof of a Horn lemma formula
DGH-term with variables
Rewrite rule for DGH-terms
Structural building block for proof search
Tree grammar rule of a compressed tree representation

14

Proof macro Horn MGT
a1i(X) -> d(’ax-1’, X) p → (q ⇒ p)
a2i(X) -> d(’ax-2’, X) (p ⇒ (q ⇒ r)) → ((p ⇒ q) ⇒ (p ⇒ r))
mpd(X, Y) -> d(a2i(Y), X) ((p ⇒ q) ∧ (p ⇒ (q ⇒ r))) → (p ⇒ r)
mpi(X, Y) -> mpd(a1i(X), Y) (p ∧ (q ⇒ (p ⇒ r))) → (q ⇒ r)

Expansion to DG-term
mpd(X, Y) -> d(d(’ax-2’, Y), X)
mpi(X, Y) -> d(d(’ax-2’, Y), d(’ax-1’, X))

Tree Compression Algorithm TreeRePair: Background

By [Lohrey, Maneth & Mennicke, 2010, 2013]
Originally addressed XML compression
Adaptation to trees of RePair for strings [Larsson & Moffat, 1999]
The compressed tree is represented by an SLCF tree grammar
• Straight-line: each nonterminal has exactly one production; acyclic• Nonterminals with parameters (rank ≥ 0)

Examples of such Grammar Rules
a1i(X) -> d(’ax-1’, X)
a2i(X) -> d(’ax-2’, X)
mpd(X, Y) -> d(a2i(Y), X)
mpi(X, Y) -> mpd(a1i(X), Y)

15

TreeRePair

RePair for strings: replace most frequent digram (2 consecutive letters) by new nonterminal

xabcabdabcxAcAdAc A→ abxBAdB B → Ac
Start → xBAdB

TreeRePair: digrams are triples ⟨parent-symbol, child-index, child-symbol ⟩
f(g(e, e), f(g(e, e), e) f(g(_, _), _) ⟨f, 1, g⟩
f(g(e, e), f(g(e, e), e) g(e, _) ⟨g, 1, e⟩
f(g(e, e), f(g(e, e), e) g(_, e) ⟨g, 2, e⟩

f(g(e, e), f(g(e, e), e)
A(e, e, A(e, e, e)) A(x1, x2, x3) → f(g(x1, x2), x3)
B(e, B(e, e)) B(x1, x2) → A(e, x1, x2)
C(C(e)) C(x1) → B(e, x1)

Start → C(C(e))
16

TreeRePair: Grammar Compression Generalizes DAG Compression

17

DAG: sharing repeated subtrees

t t

biimp -> syl(d(simplim,’df-bi’),simplim)

simplim -> con1i(’pm2.21’)

Grammar: sharing repeated tree patterns(connected subgraphs of the tree)

p
p

’pm3.48’ -> jaao(imim2i(orc),imim2i(olc))

imim2i(X) -> a2i(a1i(X))

Experiments with TreeRePair on Metamath Proofs

Basic Idea
For a set of theorems from Metamath, take all their fully expanded proofs (DG-terms)
Apply TreeRePair to compress the set of trees into a grammar
The grammar represents DGH-terms that prove Horn lemmas
Inspect the generated lemmas:
• Are they among the theorems present in Metamath?

Can usefulness in terms of human practice be explained by compression?• Are they new?
Do they suggest overlooked economic ways to structure the proofs?

But
Fully expanded proofs can be really large: peano5: 7.52e × 10

46 (tree), 42, 830 (DAG), 1, 415 lemmas
Approach

Process the proof set in accumulating subsets and don’t expand all lemmas – strategies:
• Don’t expand if it was a rediscovered Metamath theorem• Expand only a few steps with limit of expansion size 18

Outline of the Results of Two Experimental Runs

Our Variation of TreeRePair
Implemented in SWI-PrologAdapted to our needs: accumulative processing of sets of proof structuresHeuristic possibilities:
• Controlling frequency threshold of digrams to be chosen as nonterminal• Controlling choice among equally frequent digrams

Experiment Peano
The full set consists of the proofs of the 1,415 theorems involved in proving peano5We generate a well compressing grammar for all proofs in the set; takes 32 sWe rediscover around 50% of the 1,415 processed theoremsThere are also a handful of novel lemmas, 23, depending on configuration

Experiment 1600
The full set consists of the proofs of the first 1,600 theorems in set.mm40% of the 1,600 rediscovered; 33 novel lemmas; takes 40 s

19

Experiment Peano: Newly Found Lemmas – Proofs and Horn MGTs (I)

lemma9(X,Y,Z) -> d(Z,d(Y,X)).
$e |- A $.
$e |- (A -> B) $.
$e |- (B -> C) $.
$p |- C $.
Double modus ponens inference mp2b, which is not used for peano5

lemma5486 -> sylbi(ordeleqon,
jaoi(nsyl2(mtbii(d(ordirr, ordom), baib(elom)),

alrimiv(com12(con1d(syld(ord(mpbid(limomss,
sylancr(ordom,

limord,
ordsseleq))),

biimprcd(limeq)))))),
mpbiri(mpbir3an(ordon, onn0, eqcomi(unon), ’df-lim’), limeq)))

$p |- (Ord _om -> Lim _om) $.
If ω is an ordinal, it is a limit ordinal (ω is the class of natural numbers)
This is limom weakened by the precondition
Appears in the MM proof of limom immediately before the last step

20

Experiment Peano: Newly Found Lemmas – Proofs and Horn MGTs (II)

lemma2808(X) -> ’3bitr4g’(exbidv(anbi1d(X)),dfclel,dfclel).
$e |- (A -> (B = C <-> B = D)) $.
$p |- (A -> (C e. E <-> D e. E)) $.
If we know that given A, B equals C exactly when B equals D, then
it follows that given A, C and D are members of the same sets

lemma3104(X) -> bitr4i(X,albii(nbn(noel))).
$e |- (A <-> A. B (C <-> D e. (/))) $.
$p |- (A <-> A. B -. C) $.
If we know that A is equivalent to forall B.(C is equivalent to D in empytset), then
it follows that A is equivalent to forall B.(not C)

lemma3108(X,Y) -> eqtr4di(eqtrd(a1i(X),abbidv(Y)),X).
$e |- A = { B | C } $.
$e |- (D -> (C <-> C)) $.
$p |- (D -> A = A) $.
Let A be the set of elements satisfying formula C; Then, if D implies that C is equivalent to itself, then D implies that A = A
Not clear where this is really used/useful

21

Experiment Peano: Newly Found Lemmas – Proofs and Horn MGTs (III)

lemma3193(X,Y) -> eqcomd(eqtrdi(abbi2dv(X),eqcomi(Y))).
$e |- (A -> (B e. C <-> D)) $.
$e |- E = { B | D } $.
$p |- (A -> E = C) $.
Given A, if we know that B is a member of C exactly when B satisfies some property D
and we also know that E is the set of B satisfying property D, then
given A, it follows that E and C are the same set

lemma4618(X) -> sseqtrri(sstri(sseqtrri(X,’df-pr’),ssun1),’df-tp’).
$e |- A C_ ({ B } u. { C }) $.
$p |- A C_ { B , C , D } $.
If A is a subset of {B} union {C}, then it is a subset of {B,C,D}

22

Experiment 1600: Newly Found Lemmas – Proofs and Horn MGTs (I)

lemma14(X,Y,Z) -> d(d(Z,Y),X).
$e |- A $.
$e |- B $.
$e |- (B -> (A -> C)) $.
$p |- C $.

lemma17(X) -> bicomi(con2bii(X)).
$e |- (A <-> -. B) $.
$p |- (-. A <-> B) $.

lemma35(X) -> lemma14(impsingle,d(impsingle,X),impsingle).
$e |- ((A -> B) -> ((A -> C) -> (D -> C))) $.
$p |- (E -> ((A -> C) -> (D -> C))) $.

lemma79 -> adantl(id).
$p |- ((A /\ B) -> B) $.

23

Experiment 1600: Newly Found Lemmas – Proofs and Horn MGTs (II)

lemma89(X) -> lemma14(impsingle,impsingle,lemma35(D(impsingle,X))).
$e |- (((A -> ((B -> C) -> (D -> C))) -> E) -> ((C -> F) -> B)) $.
$p |- (A -> ((B -> C) -> (D -> C))) $.

lemma205(X,Y) -> impd(syld(X,expd(ancomsd(Y)))).
$e |- (A -> (B -> C)) $.
$e |- (A -> ((D /\ C) -> E)) $.
$p |- (A -> ((B /\ D) -> E)) $.

lemma266(X,Y) -> bitri(xchbinx(X,Y),bitru(fal)).
$e |- (A <-> -. B) $.
$e |- (B <-> F.) $.
$p |- (A <-> T.) $.

lemma347 -> lemma14(impsingle,
lemma89(’impsingle-step4’),
lemma89(d(impsingle,lemma89(’impsingle-step4’)))).

$p |- (((((A -> B) -> C) -> D) -> (E -> A)) ->
((C -> A) -> (E -> A))) $.

24

Experiment 1600: Newly Found Lemmas – Proofs and Horn MGTs (III)

lemma728 -> com12(con4d(ex(sylc(ancoms(syl2an(id,sylib(olc,con2bii(bicomi(ioran))),id)),
sylib(syl(simpl,orc),con2bii(bicomi(ioran))),
con3d(’pm2.27’))))).

$p |- (((-. A /\ -. (-. B /\ -. C)) -> (-. C /\ -. D)) -> (C -> A)) $.

lemma734(X) -> ’3bitri’(’3anbi123i’(’3anass’,
bitri(’3anass’,biancomi(bianass(ancom))),
bitri(bitr4i(’3ancoma’,bitri(’3ancoma’,’3ancomb’)),

’3anass’)),
bicomi(an6),anbi2i(X)).

$e |- (((A /\ B) /\ (C /\ D) /\ (E /\ F)) <-> G) $.
$p |- (((H /\ A /\ B) /\ (C /\ I /\ D) /\ (F /\ E /\ J)) <->

((H /\ I /\ J) /\ G)) $.

25

Agenda and Speculations

Further experiments, deeper analysis of the generated lemmas
Heuristics and refinements of TreeRePair
Bringing provers and learning into play
Combinators in proof-terms provide a further representation of lemmas; it is variable-free

mpi(X, Y) -> d(d(’ax-2’, Y), d(’ax-1’, X))
mpi -> d(d(b, d(c, ’ax-2’)), ’ax-1’)

Can we categorize lemmas, e.g., general inference rule or specific for a certain application area,based on compressing effects and occurrences in given sets of proofs?
Do mechanically observed redundancies in human-made proofs (they are at least in many smallMetamath proof) have a beneficial purpose?

26

Conclusion

We observed a correspondence of
• Condensed detachment proof structures, generalized to allow variables• Horn clauses proven by these structures• Metamath proofs• Grammar rules representing compressed trees

We utilize this for lemma synthesis purely from proof structure
• A lemma is justified by its compressing effect on the proof structure• The lemma formula comes second, it is computed from the proof structure
We implemented all this: our programs can directly read-in Metamath database files
First experiments with Metamath’s set.mm database show:
• About one half of the human-made lemmas can be justified by mechanically reproduciblecompression effects• Mechanical compression suggests a few novel lemmas

27

References I

[Carneiro et al., 2023] Carneiro, M., Brown, C. E., and Urban, J. (2023).
Automated theorem proving for Metamath.
In Naumowicz, A. and Thiemann, R., editors, ITP 2023, volume 268 of LIPIcs, pages 9:1–9:19. Schloss Dagstuhl– Leibniz-Zentrum für Informatik.

[Larsson and Moffat, 1999] Larsson, N. J. and Moffat, A. (1999).
Off-line dictionary-based compression.
In DCC’99, pages 296–305. IEEE.

[Lohrey et al., 2013] Lohrey, M., Maneth, S., and Mennicke, R. (2013).
XML tree structure compression using RePair.
Inf. Syst., 38(8):1150–1167.
System available from https://github.com/dc0d32/TreeRePair, accessed Jun 30, 2022.

[Megill and Wheeler, 2019] Megill, N. and Wheeler, D. A. (2019).
Metamath: A Computer Language for Mathematical Proofs.
lulu.com, second edition.
Online https://us.metamath.org/downloads/metamath.pdf.

28

https://github.com/dc0d32/TreeRePair
https://us.metamath.org/downloads/metamath.pdf

References II

[Megill, 1995] Megill, N. D. (1995).
A finitely axiomatized formalization of predicate calculus with equality.
Notre Dame J. of Formal Logic, 36(3):435–453.

[Meredith and Prior, 1963] Meredith, C. A. and Prior, A. N. (1963).
Notes on the axiomatics of the propositional calculus.
Notre Dame J. of Formal Logic, 4(3):171–187.

[Prawitz, 1960] Prawitz, D. (1960).
An improved proof procedure.
Theoria, 26:102–139.

[Rawson et al., 2023] Rawson, M., Wernhard, C., Zombori, Z., and Bibel, W. (2023).
Lemmas: Generation, selection, application.
In Ramanayake, R. and Urban, J., editors, TABLEAUX 2023, volume 14278 of LNAI, pages 153–174.

[Ulrich, 2001] Ulrich, D. (2001).
A legacy recalled and a tradition continued.
J. Autom. Reasoning, 27(2):97–122.

29

References III

[Wernhard, 2022] Wernhard, C. (2022).
Generating compressed combinatory proof structures — an approach to automated first-order theoremproving.
In Konev, B., Schon, C., and Steen, A., editors, PAAR 2022, volume 3201 of CEURWorkshop Proc.CEUR-WS.org.
https://arxiv.org/abs/2209.12592.

[Wernhard, 2024] Wernhard, C. (2024).
Structure-generating first-order theorem proving.
In Otten, J. and Bibel, W., editors, AReCCa 2023, volume 3613 of CEURWorkshop Proc., pages 64–83.CEUR-WS.org.

[Wernhard and Bibel, 2021] Wernhard, C. and Bibel, W. (2021).
Learning from Łukasiewicz and Meredith: Investigations into proof structures.
In Platzer, A. and Sutcliffe, G., editors, CADE 28, volume 12699 of LNCS (LNAI), pages 58–75. Springer.

30

https://arxiv.org/abs/2209.12592

References IV

[Wernhard and Bibel, 2024] Wernhard, C. and Bibel, W. (2024).
Investigations into proof structures.
J. Autom. Reasoning.
to appear, preprint https://arxiv.org/abs/2304.12827.

[Wos, 2001] Wos, L. (2001).
Conquering the Meredith single axiom.
J. Autom. Reasoning, 27(2):175–199.

31

https://arxiv.org/abs/2304.12827

