Language Models, Mathematics, Embeddings

[0S

Zsolt Zombori* 13 P&l Zsémboki* 3 Addm Fraknéi 1 Mat

2 2,4

Gedeon Andrds Kornai

Alfréd Rényi Institute of Mathematics, Budapest
Dept. of Algebra, Budapest University of Technology and Economics
Eotvos Lorand University, Budapest, Hungary

SZTAKI Institute of Computer Science

1/13

Goals

o Top-level goal: using LLMs to guide symbolic theorem provers

e Subgoal: understanding (evolving or creating) a language
whereby the prover can communicate its current state and the
LLM can provide hints. This language should have both a
vectorial and a formulaic facet allowing human-interpretable
communication between the two sides

e Strategy: study how various classes of formulas are
represented in LLMs

e Special emphasis on logic formulas potentially suitable for
representing thm prover state (as opposed to formulas of
arithmetic, algebra, analysis etc)

e Well-formed formulas are already hard (matching parens,
quantifier scoping)

e Understanding how LLMs can represent similar formulas is key
2/13

Plan of the talk

Our life is frittered away by detail. Simplify, simplify, sim-
plify! I say, let your affairs be as two or three, and not a
hundred or a thousand; instead of a million count half a
dozen, and keep your accounts on your thumb-nail (Henry
David Thoreau)

e Simplify I: From FOL to propositional calculus

e Using Allamanis et al., 2016 data on converting extended

propositional formulas to normal form

e Simplify Il: from well-arranged systems of parentheses (Dyck

lg) to finding out just how many are there in a string

e Simplify Ill: from highly capable LLMs to small model systems

3/13

Simplifying the simplest task

e There are three tokens ‘0’ corresponding to open paren; ‘1" to
close paren; ‘2" to non-paren. Find if #0 > #1, emit 3 if it is,
4 if it isn't

e Train set 70k strings where the number of each digit is < 100;
validation set (15k strings) with 100 < strlen(0,1,2) < 150;
test set (15k strings) with 150 < strlen(0,1,2) < 200

e Grid search over positional encoding yes/no; # dimensions,
#transformer layers; #attention heads

4/13

Conclusions from search

e No need for positional encoding — unsurprising given that the
system does deep sets (problem is permutation-invariant, see
Zaheer et al., 2018)

e No need for more than 32 dimensions (this will be reduced to
2 later, and can in principle be one)

e Just one layer, just one attention head will be good enough
for perfect systems that generalize to 100% accuracy on test

data ‘learned the rule’ 5/13

The attention mechanism

e Suppose static embedding has n dimensions, and we have k
attention heads. By convention, the dimension of an attention
head is chosen to be d = n/k

e A head is characterized by three n- d matrices called the query
Q, the key K, and the value V, each producing a d-dim vector
called the (token- and head-specific) query, key, and value

e In a single layer we compute in parallel at each token t, and
for each head h, the sum of tV)}, weighted by the scalar
product (t'Qy, t'V}). Afterwards, we concatenate the k
resulting d-dim vectors and add the original input vector

6/13

More dimensions help the search

NEE *ﬁ!ﬁ ARege¥TsTtRTTC

00 o o

@y ey e W w2 @ By ®2 ®4 @8 (el (62 (164 (68 (619 (21 (22 (24 (28 (216 (232
embedding dim, attention head count

7/13

Getting to the simplicity maximum

e Reverse engineering the 32 dim 32 head model shows 9
“winning” attention heads that classify to 100% by themselves

e With 16 dim and 16 heads we still find winning heads (but
fewer)

e With 8/8 and 4/4 we no longer find winners, but we know
they exist!

e With 2/2 other hyperparameters, in particular the learning
rate, become a big deal

iffer
embeddin gdmz ienthe. n a2

. D&

8/13

At the simplicity maximum

e Actually we can produce a perfect 1-dimensional head for
n = 2 data, we just cannot find it by random initialization and
training

e A simple setup with value v(0) = —1; v(1) =1, key
k(0) = k(1) = 1; k(2) = —100 and query g(1) = 1 will do the
work

e tracr (Lindner et al., 2023) lets you generate transformer
weights based on RASP descriptions (Weiss, Goldberg, and
Yahav, 2021) but we just use numpy

9/13

Collaboration among heads

Quite often, we can find heads that are in themselves imperfect,

but in combination perfect.

head accuracy model
1 0.5693 -0.20998879 * (head_1 out) + 0.87861097
29 0.9493 -0.15839106 * (head_29 out) + 1.031981
1+29 1.0 (0.17374; 0.83133) * (pred_1; pred_29) - 0.00226

10/13

How much we need to simplify?

recursively !
enumerable

_—

context;
sensitive

context
free Lp
SHUFFLE-DYCK-2
BFVP
regular
MAJORITY n
W(Ss) DYCK-k ww a?
PARITY wwlt
DYCK-(k, DY

NC!

—

TC"
FOMBIT]

AC?
FO[BIT]

Figure 1: Relationship of some languages and language
classes discussed in this paper (right) to the Chomsky
hierarchy (left), assuming that TC® ¢ NC' and L ¢
NL. Circuit classes are DLOGTIME-uniform.

Figure from Strobl et al.,

11/13

Acknowledgements

Zombori has been supported by Hungarian National Excellence
Grant 2018-1.2.1-NKP-00008, the Hungarian Artificial Intelligence
National Laboratory (RRF-2.3.1-21-2022-00004) and the ELTE
TKP 2021-NKTA-62 funding scheme. Kornai has been partially
supported by 2018-1.2.1-NKP-00008: Exploring the Mathematical
Foundations of Artificial Intelligence, and the Hungarian Artifical
Intelligence Laboratory (MILAB). Frakndi has been supported by
the UNKP-23-2 New National Excellence Program of the Ministry
for Culture and Innovation from the source of the National

Research, Development and Innovation Fund.

European Research Council PROJECT FINANCED
hed by the European Commission FROM THE NRDI FUND

12/13

Thank You

13/13

References

Allamanis, Miltiadis et al. (2016). “Learning Continuous Semantic
Representations of Symbolic Expressions”. In: arXiv preprint
arXiv:1611.01423.

Lindner, David et al. (2023). Tracr: Compiled Transformers as a
Laboratory for Interpretability. arXiv: 2301.05062 [cs.LG]. URL:
https://arxiv.org/abs/2301.05062.

Strobl, Lena et al. (2024). “What Formal Languages Can
Transformers Express? A Survey”. In: Transactions of the
Association for Computational Linguistics 12, pp. 543-561. DOI:
https://doi.org/10.1162/tacl.a.00663.

Weiss, Gail, Yoav Goldberg, and Eran Yahav (2021). Thinking Like
Transformers. arXiv: 2106.06981 [cs.LG]. URL:
https://arxiv.org/abs/2106.06981.

Zaheer, Manzil et al. (2018). Deep Sets. arXiv: 1703.06114
[cs.LG]. URL: https://arxiv.org/abs/1703.06114.

13/13

https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.05062
https://doi.org/https://doi.org/10.1162/tacl.a.00663
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114

	References

