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Goals

o Top-level goal: using LLMs to guide symbolic theorem provers

e Subgoal: understanding (evolving or creating) a language
whereby the prover can communicate its current state and the
LLM can provide hints. This language should have both a
vectorial and a formulaic facet allowing human-interpretable
communication between the two sides

e Strategy: study how various classes of formulas are
represented in LLMs

e Special emphasis on logic formulas potentially suitable for
representing thm prover state (as opposed to formulas of
arithmetic, algebra, analysis etc)

e Well-formed formulas are already hard (matching parens,
quantifier scoping)

e Understanding how LLMs can represent similar formulas is key
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Plan of the talk

Our life is frittered away by detail. Simplify, simplify, sim-
plify! I say, let your affairs be as two or three, and not a
hundred or a thousand; instead of a million count half a
dozen, and keep your accounts on your thumb-nail (Henry
David Thoreau)

e Simplify I: From FOL to propositional calculus

e Using Allamanis et al., 2016 data on converting extended

propositional formulas to normal form

e Simplify Il: from well-arranged systems of parentheses (Dyck

lg) to finding out just how many are there in a string

e Simplify Ill: from highly capable LLMs to small model systems
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Simplifying the simplest task

e There are three tokens ‘0’ corresponding to open paren; ‘1" to
close paren; ‘2" to non-paren. Find if #0 > #1, emit 3 if it is,
4 if it isn't

e Train set 70k strings where the number of each digit is < 100;
validation set (15k strings) with 100 < strlen(0,1,2) < 150;
test set (15k strings) with 150 < strlen(0,1,2) < 200

e Grid search over positional encoding yes/no; # dimensions,
#transformer layers; #attention heads
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Conclusions from search

e No need for positional encoding — unsurprising given that the
system does deep sets (problem is permutation-invariant, see
Zaheer et al., 2018)

e No need for more than 32 dimensions (this will be reduced to
2 later, and can in principle be one)

e Just one layer, just one attention head will be good enough
for perfect systems that generalize to 100% accuracy on test

data ‘learned the rule’ 5/13



The attention mechanism

e Suppose static embedding has n dimensions, and we have k
attention heads. By convention, the dimension of an attention
head is chosen to be d = n/k

e A head is characterized by three n- d matrices called the query
Q, the key K, and the value V, each producing a d-dim vector
called the (token- and head-specific) query, key, and value

e In a single layer we compute in parallel at each token t, and
for each head h, the sum of tV)}, weighted by the scalar
product (t'Qy, t'V}). Afterwards, we concatenate the k
resulting d-dim vectors and add the original input vector
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More dimensions help the search
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Getting to the simplicity maximum

e Reverse engineering the 32 dim 32 head model shows 9
“winning” attention heads that classify to 100% by themselves

e With 16 dim and 16 heads we still find winning heads (but
fewer)

e With 8/8 and 4/4 we no longer find winners, but we know
they exist!

e With 2/2 other hyperparameters, in particular the learning
rate, become a big deal
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At the simplicity maximum

e Actually we can produce a perfect 1-dimensional head for
n = 2 data, we just cannot find it by random initialization and
training

e A simple setup with value v(0) = —1; v(1) =1, key
k(0) = k(1) = 1; k(2) = —100 and query g(1) = 1 will do the
work

e tracr (Lindner et al., 2023) lets you generate transformer
weights based on RASP descriptions (Weiss, Goldberg, and
Yahav, 2021) but we just use numpy
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Collaboration among heads

Quite often, we can find heads that are in themselves imperfect,

but in combination perfect.

head accuracy model
1 0.5693 -0.20998879 * (head_1 out) + 0.87861097
29 0.9493 -0.15839106 * (head_29 out) + 1.031981
1+29 1.0 (0.17374; 0.83133) * (pred_1; pred_29) - 0.00226
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How much we need to simplify?
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Figure 1: Relationship of some languages and language
classes discussed in this paper (right) to the Chomsky
hierarchy (left), assuming that TC® ¢ NC' and L ¢
NL. Circuit classes are DLOGTIME-uniform.

Figure from Strobl et al.,
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Thank You
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