
Language Models, Mathematics, Embeddings

Zsolt Zombori∗ 1,3 Pál Zsámboki∗ 1,3 Ádám Fraknói 1 Máté

Gedeon 2 András Kornai 2,4

Alfréd Rényi Institute of Mathematics, Budapest

Dept. of Algebra, Budapest University of Technology and Economics

Eötvös Loránd University, Budapest, Hungary

SZTAKI Institute of Computer Science

1 / 13



Goals

• Top-level goal: using LLMs to guide symbolic theorem provers

• Subgoal: understanding (evolving or creating) a language

whereby the prover can communicate its current state and the

LLM can provide hints. This language should have both a

vectorial and a formulaic facet allowing human-interpretable

communication between the two sides

• Strategy: study how various classes of formulas are

represented in LLMs

• Special emphasis on logic formulas potentially suitable for

representing thm prover state (as opposed to formulas of

arithmetic, algebra, analysis etc)

• Well-formed formulas are already hard (matching parens,

quantifier scoping)

• Understanding how LLMs can represent similar formulas is key
2 / 13



Plan of the talk

Our life is frittered away by detail. Simplify, simplify, sim-

plify! I say, let your affairs be as two or three, and not a

hundred or a thousand; instead of a million count half a

dozen, and keep your accounts on your thumb-nail (Henry

David Thoreau)

• Simplify I: From FOL to propositional calculus

• Using Allamanis et al., 2016 data on converting extended

propositional formulas to normal form

• Simplify II: from well-arranged systems of parentheses (Dyck

lg) to finding out just how many are there in a string

• Simplify III: from highly capable LLMs to small model systems

3 / 13



Simplifying the simplest task

• There are three tokens ‘0’ corresponding to open paren; ‘1’ to

close paren; ‘2’ to non-paren. Find if #0 ≥ #1, emit 3 if it is,

4 if it isn’t

• Train set 70k strings where the number of each digit is ≤ 100;

validation set (15k strings) with 100 ≤ strlen(0,1,2) ≤ 150;

test set (15k strings) with 150 ≤ strlen(0,1,2) ≤ 200

• Grid search over positional encoding yes/no; # dimensions,

#transformer layers; #attention heads

4 / 13



Conclusions from search

• No need for positional encoding – unsurprising given that the

system does deep sets (problem is permutation-invariant, see

Zaheer et al., 2018)

• No need for more than 32 dimensions (this will be reduced to

2 later, and can in principle be one)

• Just one layer, just one attention head will be good enough

for perfect systems that generalize to 100% accuracy on test

data ‘learned the rule’ 5 / 13



The attention mechanism

• Suppose static embedding has n dimensions, and we have k

attention heads. By convention, the dimension of an attention

head is chosen to be d = n/k

• A head is characterized by three n · d matrices called the query

Q, the key K , and the value V , each producing a d-dim vector

called the (token- and head-specific) query, key, and value

• In a single layer we compute in parallel at each token t, and

for each head h, the sum of tVh weighted by the scalar

product (t ′Q ′
h, t

′V ′
h). Afterwards, we concatenate the k

resulting d-dim vectors and add the original input vector

6 / 13



More dimensions help the search

7 / 13



Getting to the simplicity maximum

• Reverse engineering the 32 dim 32 head model shows 9

“winning” attention heads that classify to 100% by themselves

• With 16 dim and 16 heads we still find winning heads (but

fewer)

• With 8/8 and 4/4 we no longer find winners, but we know

they exist!

• With 2/2 other hyperparameters, in particular the learning

rate, become a big deal

•
8 / 13



At the simplicity maximum

• Actually we can produce a perfect 1-dimensional head for

n = 2 data, we just cannot find it by random initialization and

training

• A simple setup with value v(0) = −1; v(1) = 1, key

k(0) = k(1) = 1; k(2) = −100 and query q(1) = 1 will do the

work

• tracr (Lindner et al., 2023) lets you generate transformer

weights based on RASP descriptions (Weiss, Goldberg, and

Yahav, 2021) but we just use numpy

9 / 13



Collaboration among heads

Quite often, we can find heads that are in themselves imperfect,

but in combination perfect.

head accuracy model

1 0.5693 -0.20998879 * (head 1 out) + 0.87861097

29 0.9493 -0.15839106 * (head 29 out) + 1.031981

1+29 1.0 (0.17374; 0.83133) * (pred 1; pred 29) - 0.00226

10 / 13



How much we need to simplify?

Figure from Strobl et al., 2024

11 / 13



Acknowledgements

Zombori has been supported by Hungarian National Excellence

Grant 2018-1.2.1-NKP-00008, the Hungarian Artificial Intelligence

National Laboratory (RRF-2.3.1-21-2022-00004) and the ELTE

TKP 2021-NKTA-62 funding scheme. Kornai has been partially

supported by 2018-1.2.1-NKP-00008: Exploring the Mathematical

Foundations of Artificial Intelligence, and the Hungarian Artifical

Intelligence Laboratory (MILAB). Fraknói has been supported by

the ÚNKP-23-2 New National Excellence Program of the Ministry

for Culture and Innovation from the source of the National

Research, Development and Innovation Fund.

12 / 13



Thank You

13 / 13



References



Allamanis, Miltiadis et al. (2016). “Learning Continuous Semantic

Representations of Symbolic Expressions”. In: arXiv preprint

arXiv:1611.01423.

Lindner, David et al. (2023). Tracr: Compiled Transformers as a

Laboratory for Interpretability. arXiv: 2301.05062 [cs.LG]. url:

https://arxiv.org/abs/2301.05062.

Strobl, Lena et al. (2024). “What Formal Languages Can

Transformers Express? A Survey”. In: Transactions of the

Association for Computational Linguistics 12, pp. 543–561. doi:

https://doi.org/10.1162/tacl.a.00663.

Weiss, Gail, Yoav Goldberg, and Eran Yahav (2021). Thinking Like

Transformers. arXiv: 2106.06981 [cs.LG]. url:

https://arxiv.org/abs/2106.06981.

Zaheer, Manzil et al. (2018). Deep Sets. arXiv: 1703.06114

[cs.LG]. url: https://arxiv.org/abs/1703.06114.

13 / 13

https://arxiv.org/abs/2301.05062
https://arxiv.org/abs/2301.05062
https://doi.org/https://doi.org/10.1162/tacl.a.00663
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/2106.06981
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114

	References

