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LLMs are used more and more for code generation
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1. Specify expectations

2. Check results

We should 
help with 
these tasks!

 

Developer — LLM supervisor



code

sorting function in Python

check results
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  Generate a list sorting function in Python 
  without using any library functions

def custom_sort(arr):
  n = len(arr)
  for i in range(n):
    # Last i elements are already sorted
    for j in range(0, n - i - 1):
      # Traverse the array from 0 to n-i-1
      # Swap if the element found is greater
      # than the next element
      if arr[j] > arr[j + 1]:
        arr[j], arr[j + 1] = arr[j + 1], arr[j]
  return arr

6





introduce security vulnerabilities



introduce security vulnerabilities

rate their insecure code as secure



  Generate a list sorting function in Python 
  without using any library functions

def custom_sort(arr):
  n = len(arr)
  for i in range(n):
    # Last i elements are already sorted
    for j in range(0, n - i - 1):
      # Traverse the array from 0 to n-i-1
      # Swap if the element found is greater
      # than the next element
      if arr[j] > arr[j + 1]:
        arr[j], arr[j + 1] = arr[j + 1], arr[j]
  return arr

Not only familiar code is needed



  Generate a list sorting function in Python 
  without using any library functions

def custom_sort(arr):
  n = len(arr)
  for i in range(n):
    # Last i elements are already sorted
    for j in range(0, n - i - 1):
      # Traverse the array from 0 to n-i-1
      # Swap if the element found is greater
      # than the next element
      if arr[j] > arr[j + 1]:
        arr[j], arr[j + 1] = arr[j + 1], arr[j]
  return arr

Not only familiar code is needed Testing may not be sufficient (eg, concurrency)



  Generate a list sorting function in Python 
  without using any library functions

def custom_sort(arr):
  n = len(arr)
  for i in range(n):
    # Last i elements are already sorted
    for j in range(0, n - i - 1):
      # Traverse the array from 0 to n-i-1
      # Swap if the element found is greater
      # than the next element
      if arr[j] > arr[j + 1]:
        arr[j], arr[j + 1] = arr[j + 1], arr[j]
  return arr

Not only familiar code is needed Testing may not be sufficient (eg, concurrency)

Plain English is hard to debug and imprecise



Is there a better way?
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The Coq         programming language

Definition sort (l : list nat) :  {l' : list nat | Permutation l l' & is_sorted l'}.

Returning typeArgument

Any implementation is a correct sorting function+
  Specification is a type–automatic checking+
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Current state buffer
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Current state buffer

Assumptions

Current goal



Tactic





























How do we fill those 
admits?
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Coq is very suitable for code generation

Tactics do not enforce strict structure+
Type-checking validates deep programʼs properties+

Easy to guide generation with providing structure and insights+
Holes are independent and might be filled in parallel+
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https://docs.google.com/file/d/1Tt95Pw74NN2SBI2aSurnDImIGh3xRjpr/preview
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Research Questions

● RQ1: How well general purpose LLMs can write Coq proofs?

● RQ2: To which extent does CoqPilot improve the LLM approach 
to Coq generation?

● RQ3: What is the additional value CoqPilot contributes to other 
Coq automation tools such as CoqHammer and Tactician?
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Explore and improve locally 
available models in order to make 
inference cheaper and preserve 
privacy



Integrate more Coq generation 
tools, such as Copra, 
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and 
add new selection techniques

Please talk to us if you 
have ideas!
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