
Andrei Kozyrev

Programming Languages and Program Analysis Lab PLAN, JetBrains Research

a plugin for LLM-based generation of proofs

September, 2024

Anton Podkopaev

CoqPilot

Gleb Solovev
Nikita Khramov

code

LLMs are used more and more for code generation

code

1. Specify expectations

2. Check results

code

1. Specify expectations

2. Check results

We should
help with
these tasks!

Developer — LLM supervisor

code

sorting function in Python

check results

5

 Generate a list sorting function in Python
 without using any library functions

def custom_sort(arr):
 n = len(arr)
 for i in range(n):
 # Last i elements are already sorted
 for j in range(0, n - i - 1):
 # Traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

6

introduce security vulnerabilities

introduce security vulnerabilities

rate their insecure code as secure

 Generate a list sorting function in Python
 without using any library functions

def custom_sort(arr):
 n = len(arr)
 for i in range(n):
 # Last i elements are already sorted
 for j in range(0, n - i - 1):
 # Traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

Not only familiar code is needed

 Generate a list sorting function in Python
 without using any library functions

def custom_sort(arr):
 n = len(arr)
 for i in range(n):
 # Last i elements are already sorted
 for j in range(0, n - i - 1):
 # Traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

Not only familiar code is needed Testing may not be sufficient (eg, concurrency)

 Generate a list sorting function in Python
 without using any library functions

def custom_sort(arr):
 n = len(arr)
 for i in range(n):
 # Last i elements are already sorted
 for j in range(0, n - i - 1):
 # Traverse the array from 0 to n-i-1
 # Swap if the element found is greater
 # than the next element
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

Not only familiar code is needed Testing may not be sufficient (eg, concurrency)

Plain English is hard to debug and imprecise

Is there a better way?

The Coq programming language

Definition sort (l : list nat) : {l' : list nat | Permutation l l' & is_sorted l'}.

The Coq programming language

Definition sort (l : list nat) : {l' : list nat | Permutation l l' & is_sorted l'}.

Argument

The Coq programming language

Definition sort (l : list nat) : {l' : list nat | Permutation l l' & is_sorted l'}.

Returning typeArgument

The Coq programming language

Definition sort (l : list nat) : {l' : list nat | Permutation l l' & is_sorted l'}.

Returning typeArgument

Any implementation is a correct sorting function+

The Coq programming language

Definition sort (l : list nat) : {l' : list nat | Permutation l l' & is_sorted l'}.

Returning typeArgument

Any implementation is a correct sorting function+
 Specification is a type–automatic checking+

Main buffer

Interactively typechecked part

Interactively typechecked part

Current state buffer

Current state buffer

Assumptions

Current state buffer

Assumptions

Current goal

Tactic

How do we fill those
admits?

40

Coq is very suitable for code generation

Coq is very suitable for code generation

Type-checking validates deep programʼs properties+

Coq is very suitable for code generation

Tactics do not enforce strict structure+
Type-checking validates deep programʼs properties+

Coq is very suitable for code generation

Tactics do not enforce strict structure+
Type-checking validates deep programʼs properties+

Easy to guide generation with providing structure and insights+

Coq is very suitable for code generation

Tactics do not enforce strict structure+
Type-checking validates deep programʼs properties+

Easy to guide generation with providing structure and insights+
Holes are independent and might be filled in parallel+

CoqPilot

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Few-shot prompt Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Few-shot prompt

…

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Few-shot prompt

…

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Few-shot prompt

…

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Checker

Lemma unsort_sorted
Proof 2.
 …
Defined.

Lemma unsort_sorted
Proof 1.
 …
Defined.

Few-shot prompt

…

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

Checker

Lemma unsort_sorted
Proof 2.
 …
Defined.

Lemma unsort_sorted
Proof 1.
 …
Defined.

Few-shot prompt

…

Lemma insert_sorted ...
Proof.
 ...
Defined.

Lemma is_inserted_perm ...
Proof.
 ...
Defined.…

Query

Lemma unsort_sorted ...
Proof.
 ???
Admitted.

…

Checker

Lemma unsort_sorted
Proof 2.
 …
Defined.

Lemma unsort_sorted
Proof 1.
 …
Defined.

Few-shot prompt

https://docs.google.com/file/d/1Tt95Pw74NN2SBI2aSurnDImIGh3xRjpr/preview

Research Questions

Research Questions

● RQ1: How well general purpose LLMs can write Coq proofs?

Research Questions

● RQ1: How well general purpose LLMs can write Coq proofs?

● RQ2: To which extent does CoqPilot improve the LLM approach
to Coq generation?

Research Questions

● RQ1: How well general purpose LLMs can write Coq proofs?

● RQ2: To which extent does CoqPilot improve the LLM approach
to Coq generation?

● RQ3: What is the additional value CoqPilot contributes to other
Coq automation tools such as CoqHammer and Tactician?

Informal Evaluation

Informal Evaluation

IMM Project: https://github.com/weakmemory/imm
CoqPilot ASE’24 Tool Demo paper on: https://podkopaev.net/

https://github.com/weakmemory/imm
https://podkopaev.net/

Informal Evaluation

IMM Project: https://github.com/weakmemory/imm
CoqPilot ASE’24 Tool Demo paper on: https://podkopaev.net/

https://github.com/weakmemory/imm
https://podkopaev.net/

Informal Evaluation

IMM Project: https://github.com/weakmemory/imm
CoqPilot ASE’24 Tool Demo paper on: https://podkopaev.net/

https://github.com/weakmemory/imm
https://podkopaev.net/

Informal Evaluation

IMM Project: https://github.com/weakmemory/imm
CoqPilot ASE’24 Tool Demo paper on: https://podkopaev.net/

https://github.com/weakmemory/imm
https://podkopaev.net/

Improvement directions

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and
add new selection techniques

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and
add new selection techniques

Currently used heuristics

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and
add new selection techniques

Currently used heuristics

Distance from the
target theorem

Improvement directions

Improve premise selection and
add new selection techniques

Currently used heuristics

Distance from the
target theorem

Similarity of the
goal

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and
add new selection techniques

Explore and improve locally
available models in order to make
inference cheaper and preserve
privacy

Integrate more Coq generation
tools, such as Copra,
Graph2Tac, TacTok etc.

Improvement directions

Improve premise selection and
add new selection techniques

Please talk to us if you
have ideas!

Programming Languages and Program Analysis Lab PLAN, JetBrains Research

JetBrains-Research/coqpilot

extension: coqpilot

CoqPilot: a plugin for LLM-based generation of proofs

{andrei.kozyrev, gleb.solovev, nikita.khramov, anton.podkopaev}@jetbrains.com

Feedback
&

Collaboration

