
Natty:
A Natural-Language Proof Assistant

for Higher-Order Logic

Adam Dingle

Charles University

Sep 5, 2024

Introduction: a question

● Can current systems automatically verify proof steps
in textbook mathematics almost all of the time?

– If so, formalizing mathematics should be (relatively)
easy

– If not, why not?

09.09.2024 3 / 47

Natty

● Natty: a new natural-language proof assistant
● User writes axioms/theorems/proofs in (controlled)

natural language
● Natty translates them into higher-order logic
● ...and formally proves that they are true

09.09.2024 4 / 47

Natty: a nascent project

● Initial commit on Feb 18, 2024
● About 3,200 lines of OCaml code
● Work in progress!
● Today, can only prove some statements about and ℕ ℤ
● Goal: expand to general mathematics
● Online: https://github.com/medovina/natty

09.09.2024 5 / 47

A benchmark: Wiedijk’s 100 theorems

1. The Irrationality of the Square Root of 2

2. Fundamental Theorem of Algebra

3. The Denumerability of the Rational Numbers

4. · · ·

09.09.2024 6 / 47

A benchmark: Wiedijk’s 100 theorems

2006 2008 2010 2012 2014 2016 2018 2020 2022 2024
year

30

40

50

60

70

80

90

th
eo

re
m

s p
ro

ve
d

Theorems from top 100 list proved over time
Isabelle
HOL Light
Coq
Lean
Metamath
Mizar

09.09.2024 7 / 47

09.09.2024 8 / 47

09.09.2024 9 / 47

09.09.2024 10 / 47

Input language

● Axioms, definitions, lemmas/theorems, proofs
● Implicit multiplication
● User must specify a type for every variable
● Supports set comprehension syntax

– a set is a function with codomain 𝔹
● Type overloading

– 0 : and 0 : ℕ ℤ
– + : → → and + : → → ℕ ℕ ℕ ℤ ℤ ℤ

● No polymorphism (yet)!
● Proof steps may invoke a previous lemma/theorem

09.09.2024 11 / 47

Input file: nat.n
● Defines axiomatically (Peano axioms)ℕ

– Defines +, ·, < axiomatically
– Using axioms for definitions is not great - this will change

● 37 theorems about ℕ
– 9 with hand-written proofs
– 102 proof steps

● Defines axiomaticallyℤ
– Isomorphic to equivalence class of (,)ℕ ℕ

● Defines +, −, ·, < on axiomaticallyℤ
● 22 theorems about ℤ

– 12 with hand-written proofs
– 106 proof steps

09.09.2024 12 / 47

Running Natty

● Can run from command line, or interactively via
VS Code extension

● Output: THF file for each theorem and proof step
– 38 theorems without proof steps

– 21 theorems with proof steps

– 208 proof steps

● We can try to prove these with Natty, or send them to
external provers

09.09.2024 13 / 47

Prover performance (time limit: 5 seconds)

Natty E Vampire Zipperposition

proved (of 59) 20 36 18 26

average time 0.5 0.07 0.7 0.77

PAR-2 score 6.78 3.94 7.16 5.93

Natty E Vampire Zipperposition

proved (of 208) 150 191 166 156

average time 0.34 0.14 0.18 0.38

PAR-2 score 3.03 0.94 2.17 2.78

Theorems

Proof steps

09.09.2024 14 / 47

How does Natty work?

1.Translate input to a series of logical formulas

2.Formally verify each formula

09.09.2024 15 / 47

Foundations of various provers

● first-order set theory: Mizar, Metamath
● higher-order set theory: Naproche/ZF, Megalodon
● classical higher-order logic: Isabelle, HOL, Natty
● dependent type theory: Lean, Coq

09.09.2024 16 / 47

Higher-order logic

● Terms look like typed lambda calculus
● Can express higher-order concepts

– Peano induction is a single formula, not a schema
● Strong typing

– no “false theorems” such as 0 = ∅
– static checking

● Complete proof calculus (Bentkamp et al, 2023)
● Now supported by automatic provers (e.g. E, Vampire)
● Standard interchange format (THF = Typed Higher-order

Format)

09.09.2024 17 / 47

Translation to logic: parsing

● (Mostly) context-free grammar
– Less than 200 lines of EBNF

● Includes typical phrases: “we deduce that”,
“we see that”, ...

● Implementation using parser combinators
● About 430 lines of OCaml code

09.09.2024 18 / 47

Translation to logic: proof structure

● Natty infers block structure of each proof
● Must be correct, otherwise generated formulas will be

invalid
● Need to infer scope of each quantifier, assumption
● In ordinary mathematical writing, assumptions are

discharged implicitly!

09.09.2024 19 / 47

Proof structure: example

let a, b : ℕ
 assume a < b
 is_some c : : a + c = bℕ
 assert (a + 1) + c = b + 1
 assert s(a) + c = s(b)
 assert s(a) < s(b)
 assume s(a) < s(b)
 is_some c : : s(a) + c = s(b)ℕ
 assert (a + 1) + c = b + 1
 assert a + c = b
 assert a < b
assert a: . b: .(a < b ↔ s(a) < s(b))∀ ℕ ∀ ℕ

Theorem 8.1. Let a, b, c ℕ. a < b if and only if s(a) < s(b).ℕ

Proof. Let a, b . Suppose that a < b. Then there is some c such ∈ℕ ∈ℕ
that a + c = b. So a + 1 + c = b + 1. Then s(a) + c = s(b), so s(a) < s(b).
Now suppose that s(a) < s(b). Then there is some c such that ∈ℕ
s(a) + c = s(b). So a + 1 + c = b + 1. Then a + c = b, so a < b.

09.09.2024 20 / 47

Proof structure heuristics

● Broadly speaking:
– scope of each introduced variable V ends at the last

reference to V

– an assumption remains open until either
● its containing scope ends
● we see a keyword such as "Now" or "Conversely"

● Detailed rules in workshop paper

09.09.2024 21 / 47

Translation to logic: outputting formulas
let a, b : ℕ
 assume a < b
 is_some c : : a + c = bℕ
 assert (a + 1) + c = b + 1
 assert s(a) + c = s(b)
 assert s(a) < s(b)
 assume s(a) < s(b)
 is_some c : : s(a) + c = s(b)ℕ
 assert (a + 1) + c = b + 1
 assert a + c = b
 assert a < b
assert a: . b: .(a < b ↔ s(a) < s(b))∀ ℕ ∀ ℕ

1. a:N. b:N.(a < b → c:N.a + c = b)∀ ∀ ∃
2. a:N. b:N.(a < b → c:N.(a + c = b →∀ ∀ ∀
 (a + 1) + c = b + 1))
3. a:N. b:N.(a < b → c:N.(a + c = b →∀ ∀ ∀
 (a + 1) + c = b + 1 → s(a) + c = s(b)))
4. a:N. b:N.(a < b →∀ ∀
 ∃c:N.s(a) + c = s(b) → s(a) < s(b))
...

09.09.2024 22 / 47

Assumptions in generated formulas

Suppose that x > 10. Also suppose that y > 20.
Then x + 1 > 11, and y + 2 > 22. So (x + 1) + (y + 2) > 33.

● Approach 1: each output formula contains active assumptions
– φ1: x > 10 y > 20 → x + 1 > 11∧
– φ2: x > 10 y > 20 → y + 2 > 22∧
– φ3: x > 10 y > 20 → (x + 1) + (y + 2) > 33∧

● Approach 2: also contain results of previous steps
– φ1: x > 10 y > 20 → x + 1 > 11∧
– φ2: x > 10 y > 20 x + 1 > 11 → y + 2 > 22∧ ∧
– φ3: x > 10 y > 20 x + 1 > 11 y + 2 > 22 → (x + 1) + (y + 2) > 33∧ ∧ ∧

● Natty uses the second approach
– Advantage: each output formula can be proved independently
– Disadvantage: formulas can become large

09.09.2024 23 / 47

How does Natty work?

1.Translate input to a series of logical formulas

2.Formally verify each formula

09.09.2024 24 / 47

Internal superposition-based prover

Why write a new automatic prover?
– Other provers cannot prove all proof steps quickly, or at all

– We want to be able to say that a proof step should use a
certain lemma/theorem

– Other provers don’t support all THF features
● polymorphism
● tuples

– More flexible / easy to integrate

09.09.2024 25 / 47

Natty’s internal prover

● Broadly similar to E (and probably Vampire)
● Based on higher-order superposition calculus

– “Superposition for Higher-Order Logic” (Bentkamp et al,
2023)

● The full calculus is complete, but complex
● Natty uses a pragmatic, incomplete variant (like E)
● Goal: prove easy theorems quickly (e.g. less than

5 seconds)

09.09.2024 26 / 47

Proof calculus: superposition rule

09.09.2024 27 / 47

Proof calculus: other rules

● Equality resolution
● Outer clausification
● Splitting clausification
● Rewriting
● Subsumption
● Simplification
● Tautology deletion
● AC (associative-commutative) tautology deletion
● Most are similar to rules in E

09.09.2024 28 / 47

Proof procedure: term ordering

● Higher-order superposition calculus has technical
requirements on ordering

● Natty uses suggested term ordering
– encode higher-order terms as first-order terms

– transfinite Knuth-Bendix ordering on first-order terms

– allows symbols to have infinite weights

● Unary function symbols have weight 2, others have
weight 1

● May still experiment with lexicographic path ordering

09.09.2024 29 / 47

Proof procedure: unification

● Full higher-order unification is needed for completeness
● But it’s hard

– only semi-decidable

– two terms may have an infinite number of unifiers

● Natty performs only first-order unification, mostly
● Can also unify lambda terms with variables in same

positions
– e.g. λx.f(x, y) and λz.f(z, 4)

09.09.2024 30 / 47

Proof procedure: unification

● Natty’s simple unification can still find inductive proofs
● Peano axiom of induction

– ∀P:(→).(P(0) → k: .(P(k) → P(s(k))) → n: .P(n))ℕ 𝔹 ∀ ℕ ∀ ℕ
● Final consequent is (λn: . P(n))∀ ℕ

– which η-reduces to (P)∀
● Suppose we are proving a: . 0 + a = a∀ ℕ
● This is (λa: . 0 + a = a)∀ ℕ

– which unifies trivially with (P)∀
– No higher-order unification is necessary!

● However, we must relax one superposition condition to
allow this to proceed

09.09.2024 31 / 47

Proof procedure

● Modeled after main loop in E
● Input: formula to be proved, plus all known formulas
● Negate the goal, then saturate to search for a

contradiction

09.09.2024 32 / 47

Proof procedure: main loop

● Natty uses DISCOUNT loop as found in E
● Clauses are in two sets: processed = P and unprocessed = U
● Loop:

1. Select a given clause C from U, add it to P

2. Simplify C using clauses from P

3. Simplify clauses in P using C

4. Generate new clauses from P and C

5. Send new and simplified clauses to U
● Invariant: all clauses in P are always mutually reduced

09.09.2024 33 / 47

A surprisingly challenging proof step

● This proof step should be trivial, but none of E,
Vampire, Zipperposition can prove it in 5 seconds!

09.09.2024 34 / 47

Proof procedure: pinning

● ca + c = cp + c gets rewritten, so it can’t unify
with the antecedent of a relevant theorem

● Natty pins clauses derived from the goal, so it can
prove this step

∀b: . c: .(c ≠ 0 → 0 · c = bc → 0 = b)ℕ ∀ ℕ
→ ∀y: . z: .(z ≠ 0 → 0 · z = yz → 0 = y)ℕ ∀ ℕ
→ ∀a: .(y: . z: .(z ≠ 0 → az = yz → a = y)ℕ ∀ ℕ ∀ ℕ
 → ∀b: . c: .(c ≠ 0ℕ ∀ ℕ
 → s(a) · c = bc
 → ca + c = bc
 → (b = 0 →)⊥
 → b ≠ 0
 → ∀p: .(b = s(p)ℕ
 → ca + c = s(p) · c
 → ca + c = cp + c
 → ca = cp)))

09.09.2024 35 / 47

Proof procedure: given clause selection

● Critical for prover performance
● Most superposition provers use two or more priority

queues
– e.g. one queue ordered by age, one queue by term size
– select in round robin fashion

● Natty uses a single queue with a single cost function
● Intution: in many proofs most steps are downhill
● A clause’s cost is the number of uphill steps in its

derivation

09.09.2024 36 / 47

Proof procedure: given clause selection

● Every superposition inference has a cost δ
– All other inferences (e.g. rewriting) have cost 0

● Let w(C) = Knuth-Bendix weight of clause C
● Suppose that E is derived from D, C by superposition

– If w(E) ≤ w(C) (i.e. a downhill step), then δ = 0.01
– Otherwise δ = 1.0

● The cost k of each clause is the total cost of all inferences
in its derivation

● Natty finds all these inferences via a depth-first search
● A clause’s cost is not the sum of the costs of its parents!

09.09.2024 37 / 47

Advantages of a single cost function

● Easier to understand / debug
● We can encourage the prover to use certain axioms /

known theorems by decreasing their initial cost (e.g. to
a negative value)
– Not yet implemented

09.09.2024 38 / 47

Proof procedure: clausification

● Clause normal form in first-order logic
– clause = L1 . . . ∨ ∨Ln

– Each Li is a literal P(t1 , . . . , tn) or ¬P(t1 , . . . , tn)

– All variables implicitly universally quantified

● Any first-order formula can be transformed to a
conjunction of clauses

● Satisfiability is preserved
● Existential quantifiers eliminated via Skolemization

09.09.2024 39 / 47

Proof procedure: clausification

● Some higher-order provers (E) clausify all formulas
immediately

● Higher-order inferences can generate formulas with
quantifiers
– E will immediately clausify those as well

● Clausification destroys formula structure
– Makes proofs hard to understand

– Formula structure can be useful for inferences

09.09.2024 40 / 47

Proof procedure: clausification

● Natty tries to preserve formula structure as much as
possible

● No immediate clausification
● However, formulas must be clausified sooner or later
● Dilemma: should clausification be destructive?

– If yes, then formula structure is lost

– If no, then many formulas will be redundant

09.09.2024 41 / 47

Two clausification rules

● Rule OC performs a clausification step that does not
split the clause, e.g.
– ¬(A B) becomes (¬A ¬B)∧ ∨
– (A → B) becomes (¬A B)∨
– eliminate universal quantifier ∀
– skolemize existential quantifier ∃

● Rule SPLIT performs a step that splits the clause into
two, e.g.
– ¬(A B) becomes clauses ¬A and ¬B∨
– ¬(A → B) becomes clauses A and ¬B

09.09.2024 42 / 47

Dynamic clausification

● To perform superposition between clauses C and D:
● Apply OC repeatedly to C: C1 , . . . , Cn

● Apply OC repeatedly to D: D1 , . . . , Dn

● Look for superposition inferences between pairs Ci /Dj

● Only consider literals that first appeared in Ci

● Only consider subterms that first appeared in Dj

● C1 , . . . , Cn and D1 , . . . , Dn are then discarded

09.09.2024 43 / 47

New clause processing

● When a new clause is given:
– Natty applies OC and SPLIT recursively to reduce it to

normal form

– Only the original clause plus immediate children of SPLITs
are kept

09.09.2024 44 / 47

Dynamic clausification: example

09.09.2024 45 / 47

Next steps: improve prover performance

● Goal: Prove all steps in all theorems about and ℕ ℤ
● Experiment with given clause heuristic
● Index clauses
● Profile to find bottlenecks

09.09.2024 46 / 47

Next steps

● Goal: prove first 10 Wiedjik theorems
● Add type polymorphism, possibly with type inference
● Allow inductive type definitions
● Allow recursive function definitions
● Allow new type definitions
● Define reals and rational numbers

09.09.2024 47 / 47

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

