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Introduction: a question

● Can current systems automatically verify proof steps 
in textbook mathematics almost all of the time?

– If so, formalizing mathematics should be (relatively) 
easy

– If not, why not?
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Natty

● Natty: a new natural-language proof assistant
● User writes axioms/theorems/proofs in (controlled) 

natural language
● Natty translates them into higher-order logic
● ...and formally proves that they are true
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Natty: a nascent project

● Initial commit on Feb 18, 2024
● About 3,200 lines of OCaml code
● Work in progress!
● Today, can only prove some statements about  and ℕ ℤ
● Goal: expand to general mathematics
● Online: https://github.com/medovina/natty
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A benchmark: Wiedijk’s 100 theorems

1. The Irrationality of the Square Root of 2

2. Fundamental Theorem of Algebra

3. The Denumerability of the Rational Numbers

4. · · ·
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A benchmark: Wiedijk’s 100 theorems
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Input language

● Axioms, definitions, lemmas/theorems, proofs
● Implicit multiplication
● User must specify a type for every variable
● Supports set comprehension syntax

– a set is a function with codomain 𝔹
● Type overloading

– 0 :  and 0 : ℕ ℤ
– + :  →  →  and + :  →  → ℕ ℕ ℕ ℤ ℤ ℤ

● No polymorphism (yet)!
● Proof steps may invoke a previous lemma/theorem
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Input file: nat.n
● Defines  axiomatically (Peano axioms)ℕ

– Defines +, ·, < axiomatically
– Using axioms for definitions is not great - this will change

● 37 theorems about ℕ
– 9 with hand-written proofs
– 102 proof steps

● Defines  axiomaticallyℤ
– Isomorphic to equivalence class of ( , )ℕ ℕ

● Defines +, −, ·, < on  axiomaticallyℤ
● 22 theorems about ℤ

– 12 with hand-written proofs
– 106 proof steps
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Running Natty

● Can run from command line, or interactively via 
VS Code extension

● Output: THF file for each theorem and proof step
– 38 theorems without proof steps

– 21 theorems with proof steps

– 208 proof steps

● We can try to prove these with Natty, or send them to 
external provers
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Prover performance (time limit: 5 seconds)

Natty E Vampire Zipperposition

proved (of 59) 20 36 18 26

average time 0.5 0.07 0.7 0.77

PAR-2 score 6.78 3.94 7.16 5.93

Natty E Vampire Zipperposition

proved (of 208) 150 191 166 156

average time 0.34 0.14 0.18 0.38

PAR-2 score 3.03 0.94 2.17 2.78

Theorems

Proof steps
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How does Natty work?

1.Translate input to a series of logical formulas

2.Formally verify each formula
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Foundations of various provers

● first-order set theory: Mizar, Metamath
● higher-order set theory: Naproche/ZF, Megalodon
● classical higher-order logic: Isabelle, HOL, Natty
● dependent type theory: Lean, Coq
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Higher-order logic

● Terms look like typed lambda calculus
● Can express higher-order concepts

– Peano induction is a single formula, not a schema
● Strong typing

– no “false theorems” such as 0 = ∅
– static checking

● Complete proof calculus (Bentkamp et al, 2023)
● Now supported by automatic provers (e.g. E, Vampire)
● Standard interchange format (THF = Typed Higher-order 

Format)
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Translation to logic: parsing

● (Mostly) context-free grammar
– Less than 200 lines of EBNF

● Includes typical phrases: “we deduce that”, 
“we see that”, ...

● Implementation using parser combinators
● About 430 lines of OCaml code
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Translation to logic: proof structure

● Natty infers block structure of each proof
● Must be correct, otherwise generated formulas will be 

invalid
● Need to infer scope of each quantifier, assumption
● In ordinary mathematical writing, assumptions are 

discharged implicitly!
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Proof structure: example

let a, b : ℕ
  assume a < b
    is_some c :  : a + c = bℕ
      assert (a + 1) + c = b + 1
      assert s(a) + c = s(b)
    assert s(a) < s(b)
  assume s(a) < s(b)
    is_some c :  : s(a) + c = s(b)ℕ
      assert (a + 1) + c = b + 1
      assert a + c = b
    assert a < b
assert a: . b: .(a < b ↔ s(a) < s(b))∀ ℕ ∀ ℕ

Theorem 8.1. Let a, b, c  ℕ. a < b if and only if s(a) < s(b).ℕ

Proof. Let a, b  . Suppose that a < b. Then there is some c   such ∈ℕ ∈ℕ
that a + c = b. So a + 1 + c = b + 1. Then s(a) + c = s(b), so s(a) < s(b). 
Now suppose that s(a) < s(b). Then there is some c   such that ∈ℕ
s(a) + c = s(b). So a + 1 + c = b + 1. Then a + c = b, so a < b.
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Proof structure heuristics

● Broadly speaking:
– scope of each introduced variable V ends at the last 

reference to V

– an assumption remains open until either
● its containing scope ends
● we see a keyword such as "Now" or "Conversely"

● Detailed rules in workshop paper
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Translation to logic: outputting formulas
let a, b : ℕ
  assume a < b
    is_some c :  : a + c = bℕ
      assert (a + 1) + c = b + 1
      assert s(a) + c = s(b)
    assert s(a) < s(b)
  assume s(a) < s(b)
    is_some c :  : s(a) + c = s(b)ℕ
      assert (a + 1) + c = b + 1
      assert a + c = b
    assert a < b
assert a: . b: .(a < b ↔ s(a) < s(b))∀ ℕ ∀ ℕ

1. a:N. b:N.(a < b → c:N.a + c = b)∀ ∀ ∃
2. a:N. b:N.(a < b → c:N.(a + c = b →∀ ∀ ∀
           (a + 1) + c = b + 1))
3. a:N. b:N.(a < b → c:N.(a + c = b →∀ ∀ ∀
           (a + 1) + c = b + 1 → s(a) + c = s(b)))
4. a:N. b:N.(a < b →∀ ∀
           ∃c:N.s(a) + c = s(b) → s(a) < s(b))
...
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Assumptions in generated formulas

Suppose that x > 10.  Also suppose that y > 20.  
Then x + 1 > 11, and y + 2 > 22.  So (x + 1) + (y + 2) > 33.

● Approach 1: each output formula contains active assumptions
– φ1: x > 10  y > 20 → x + 1 > 11∧
– φ2: x > 10  y > 20 → y + 2 > 22∧
– φ3: x > 10  y > 20 → (x + 1) + (y + 2) > 33∧

● Approach 2: also contain results of previous steps
– φ1: x > 10  y > 20 → x + 1 > 11∧
– φ2: x > 10  y > 20  x + 1 > 11 → y + 2 > 22∧ ∧
– φ3: x > 10  y > 20  x + 1 > 11  y + 2 > 22 → (x + 1) + (y + 2) > 33∧ ∧ ∧

● Natty uses the second approach
– Advantage: each output formula can be proved independently
– Disadvantage: formulas can become large
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How does Natty work?

1.Translate input to a series of logical formulas

2.Formally verify each formula
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Internal superposition-based prover

Why write a new automatic prover?
– Other provers cannot prove all proof steps quickly, or at all

– We want to be able to say that a proof step should use a 
certain lemma/theorem

– Other provers don’t support all THF features
● polymorphism
● tuples

– More flexible / easy to integrate
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Natty’s internal prover

● Broadly similar to E (and probably Vampire)
● Based on higher-order superposition calculus

– “Superposition for Higher-Order Logic” (Bentkamp et al, 
2023)

● The full calculus is complete, but complex
● Natty uses a pragmatic, incomplete variant (like E)
● Goal: prove easy theorems quickly (e.g. less than 

5 seconds)
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Proof calculus: superposition rule
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Proof calculus: other rules

● Equality resolution
● Outer clausification
● Splitting clausification
● Rewriting
● Subsumption
● Simplification
● Tautology deletion
● AC (associative-commutative) tautology deletion
● Most are similar to rules in E



09.09.2024 28 / 47

Proof procedure: term ordering

● Higher-order superposition calculus has technical 
requirements on ordering

● Natty uses suggested term ordering
– encode higher-order terms as first-order terms

– transfinite Knuth-Bendix ordering on first-order terms

– allows symbols to have infinite weights

● Unary function symbols have weight 2, others have 
weight 1

● May still experiment with lexicographic path ordering
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Proof procedure: unification

● Full higher-order unification is needed for completeness
● But it’s hard

– only semi-decidable

– two terms may have an infinite number of unifiers

● Natty performs only first-order unification, mostly
● Can also unify lambda terms with variables in same 

positions
– e.g. λx.f(x, y) and λz.f(z, 4)
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Proof procedure: unification

● Natty’s simple unification can still find inductive proofs
● Peano axiom of induction

– ∀P:(  → ).(P(0) → k: .(P(k) → P(s(k))) → n: .P(n))ℕ 𝔹 ∀ ℕ ∀ ℕ
● Final consequent is (λn:  . P(n))∀ ℕ

– which η-reduces to (P)∀
● Suppose we are proving a:  . 0 + a = a∀ ℕ
● This is (λa: . 0 + a = a)∀ ℕ

– which unifies trivially with (P)∀
– No higher-order unification is necessary!

● However, we must relax one superposition condition to 
allow this to proceed
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Proof procedure

● Modeled after main loop in E
● Input: formula to be proved, plus all known formulas
● Negate the goal, then saturate to search for a 

contradiction
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Proof procedure: main loop

● Natty uses DISCOUNT loop as found in E
● Clauses are in two sets: processed = P and unprocessed = U
● Loop:

1. Select a given clause C from U, add it to P

2. Simplify C using clauses from P

3. Simplify clauses in P using C

4. Generate new clauses from P and C

5. Send new and simplified clauses to U
● Invariant: all clauses in P are always mutually reduced
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A surprisingly challenging proof step

● This proof step should be trivial, but none of E, 
Vampire, Zipperposition can prove it in 5 seconds!
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Proof procedure: pinning

● ca + c = cp + c gets rewritten, so it can’t unify 
with the antecedent of a relevant theorem

● Natty pins clauses derived from the goal, so it can 
prove this step

∀b: . c: .(c ≠ 0 → 0 · c = bc → 0 = b)ℕ ∀ ℕ
→ ∀y: . z: .(z ≠ 0 → 0 · z = yz → 0 = y)ℕ ∀ ℕ
→ ∀a: .( y: . z: .(z ≠ 0 → az = yz → a = y)ℕ ∀ ℕ ∀ ℕ
        → ∀b: . c: .(c ≠ 0ℕ ∀ ℕ
                        → s(a) · c = bc
                        → ca + c = bc
                        → (b = 0 → )⊥
                        → b ≠ 0
                        → ∀p: .(b = s(p)ℕ
                                → ca + c = s(p) · c
                                → ca + c = cp + c
                                → ca = cp)))
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Proof procedure: given clause selection

● Critical for prover performance
● Most superposition provers use two or more priority 

queues
– e.g. one queue ordered by age, one queue by term size
– select in round robin fashion

● Natty uses a single queue with a single cost function
● Intution: in many proofs most steps are downhill
● A clause’s cost is the number of uphill steps in its 

derivation
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Proof procedure: given clause selection

● Every superposition inference has a cost δ
– All other inferences (e.g. rewriting) have cost 0

● Let w(C) = Knuth-Bendix weight of clause C
● Suppose that E is derived from D, C by superposition

– If w(E) ≤ w(C) (i.e. a downhill step), then δ = 0.01
– Otherwise δ = 1.0

● The cost k of each clause is the total cost of all inferences 
in its derivation

● Natty finds all these inferences via a depth-first search
● A clause’s cost is not the sum of the costs of its parents!
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Advantages of a single cost function

● Easier to understand / debug
● We can encourage the prover to use certain axioms / 

known theorems by decreasing their initial cost (e.g. to 
a negative value)
– Not yet implemented
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Proof procedure: clausification

● Clause normal form in first-order logic
– clause = L1  . . .  ∨ ∨Ln

– Each Li is a literal P(t1 , . . . , tn ) or ¬P(t1 , . . . , tn )

– All variables implicitly universally quantified

● Any first-order formula can be transformed to a 
conjunction of clauses

● Satisfiability is preserved
● Existential quantifiers eliminated via Skolemization
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Proof procedure: clausification

● Some higher-order provers (E) clausify all formulas 
immediately

● Higher-order inferences can generate formulas with 
quantifiers
– E will immediately clausify those as well

● Clausification destroys formula structure
– Makes proofs hard to understand

– Formula structure can be useful for inferences
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Proof procedure: clausification

● Natty tries to preserve formula structure as much as 
possible

● No immediate clausification
● However, formulas must be clausified sooner or later
● Dilemma: should clausification be destructive?

– If yes, then formula structure is lost

– If no, then many formulas will be redundant
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Two clausification rules

● Rule OC performs a clausification step that does not 
split the clause, e.g.
– ¬(A  B) becomes (¬A  ¬B)∧ ∨
– (A → B) becomes (¬A  B)∨
– eliminate universal quantifier ∀
– skolemize existential quantifier ∃

● Rule SPLIT performs a step that splits the clause into 
two, e.g.
– ¬(A  B) becomes clauses ¬A and ¬B∨
– ¬(A → B) becomes clauses A and ¬B
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Dynamic clausification

● To perform superposition between clauses C and D:
● Apply OC repeatedly to C: C1 , . . . , Cn

● Apply OC repeatedly to D: D1 , . . . , Dn

● Look for superposition inferences between pairs Ci /Dj

● Only consider literals that first appeared in Ci

● Only consider subterms that first appeared in Dj

● C1 , . . . , Cn and D1 , . . . , Dn are then discarded 
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New clause processing

● When a new clause is given:
– Natty applies OC and SPLIT recursively to reduce it to 

normal form

– Only the original clause plus immediate children of SPLITs 
are kept
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Dynamic clausification: example
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Next steps: improve prover performance

● Goal: Prove all steps in all theorems about  and ℕ ℤ
● Experiment with given clause heuristic
● Index clauses
● Profile to find bottlenecks
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Next steps

● Goal: prove first 10 Wiedjik theorems
● Add type polymorphism, possibly with type inference
● Allow inductive type definitions
● Allow recursive function definitions
● Allow new type definitions
● Define reals and rational numbers
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Questions
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