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Introduction: In satisfiability modulo theories (SMT) solvers, the ground reasoning is
handled by highly optimized theory-specific solvers. For example, linear integer arithmetic or
boolean vector calculations can be handled by specific routines that exploit domain knowledge.

The non-ground reasoning can be handled via quantifier instantiation. In existing SMT
solvers, such as cvc5 [1], there are already several strategies implemented to choose how to
instantiate quantified expressions (QEs). For example, there is enumerative instantiation, in
which the solver prefers tuples of terms that contain terms created earlier. There is also E-
matching, which uses a specific pattern matching algorithm to choose terms to instantiate with.
Another possibility is to make use of the propositional model, like in model-based quantifier
instantiation. As the space of possible instantiations is difficult to navigate, a logical step is to
use machine learning techniques to learn a heuristic that will determine which instantiations are
preferred by the solver. Here we modify the enumerative instantiation with an ML predictor.

Graph Neural Network in cvc5: While many different neural network methods can
be used to guide automated theorem provers, a natural choice, based on the graph representa-
tion that cvc5 uses for the proof state, is the class of predictors called graph neural networks
(GNNs) [6]. On a high level, GNNs represent each node in a graph with a vector of floating
point numbers, and update these vectors using the vector representations of neighbouring nodes
in the graph. By using optimization procedures, the GNN ‘learns’ to aggregate and update the
node representations in such a way that at the end of several iterations of this neighbourhood-
based updating procedure (usually called message passing), the node representations contain
useful information to predict some relevant quantity. In our setting, these relevant quantities
are: (i) scores for each quantified expression that represent whether this expression should be
instantiated and (ii) scores for each pair of variables and terms that represent whether this
particular variable should be instantiated with a particular term.

We implement a custom GNN using the C++ frontend of PyTorch [5]. ML-guided ATPs
often use a separate GPU server [2, 3], to which multiple prover processes send their requests
for advice. Here, we are however interested in a tight integration within cvc5. The network
is trained on e-matching proof traces on first-order CNF problems extracted from the Mizar
Mathematical Library and then used to predict instantiations in the enumerative mode. This
is because the e-matching mode is stronger on the Mizar data, and can thus gather more
training data, but the enumeration mode is simpler to modify and instrument with a GNN. In
Table 1, we show the development and holdout set performance of the ML-guided cvc5, along
with various control experiments. One experiment is a dry run to measure slowdown effects: we
compute the neural network predictions but ignore them and use the standard enumeration age-
based heuristics instead. There are two ways to use the QE predictions: probabilistic sampling
or a threshold. We observe that the performance of the enumeration mode was improved by
up to 72% (336/195 = 1.723) when we use the Threshold (1 inst) variant of our network.
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Development Holdout

Bcvc5 — only e-matching 1096 1107
Bcvc5 — only enumeration 183 195
MLcvc5 — dry run 119 120
MLcvc5 — model (QSampling) 288 300
MLcvc5 — model (Threshold - 1x10-5, 1 inst) 324 336
MLcvc5 — model (Threshold - 1x10-5, 10 inst) 410 407

Table 1: MML1147: Number of problems solved by 10s runs. On both the development and
the holdout sets the GNN-guided enumeration mode outperforms the unguided enumeration
mode. Both the development and holdout set contain 2896 problems.

These results taken together indicate that the network has learned a useful strategy from the
e-matching generated training data, which it can apply in the ML enumeration mode.

The data in Figure 1 indicates that some difference in performance is due to the difference
in the raw number of instantiations done. As we are already incurring the cost of computing
the GNN advice, it might be the case that instantiation with multiple high-scoring tuples per
round, instead of only 1 per QE as the original enumeration does, is a better use of the GNN
advice. To test this, we ran a version of the ML mode that performs up to 10 instantiations per
QE per round (see Table 1). This led to 407 solved holdout problems (again in 10s real time).
This is a 109% increase compared to the unmodified enumeration mode (407/195 = 2.09).

Conclusion & Future Work: While e-matching largely dominates on first-order logic
problems extracted from the Mizar Mathematical Library, on problems from the SMTLIB
database, the enumeration procedure is much more competitive [4], and can even outperform
e-matching on certain types of benchmarks. In principle, we can extend the current method to
SMT problems, aside from the fact that the logging procedure that extracts training data from
cvc5 runs needs to be modified.
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Figure 1: Violin plots of the number of instantiations performed in successful runs for Bcvc5
e-matching, Bcvc5 enumeration, dry run, the ML strategy with threshold 1e-5, and the ML
strategy with 10x as many instantiations per quantifier per round. The white dots indicate the
medians. The respective medians are 2235, 1026, 373.5, 250 and 1620.
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