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Problem statement We are interested in improving the performance of transformer language
models (LMs) in solving mathematical tasks. Today, even large language models (LLMs) with
billions of parameters are notoriously bad for performing simple arithmetic tasks [2], a situation
we attribute to a fundamental difference between the role individual tokens play in natural
language processing (NLP) and in arithmetic. NLP relies on short sequences of tokens (word
pieces) to recur in morphemes and words (meaningful units) predictably, and with a strong
conditioning between such units and the units that make up their immediate context. For
example, in disambiguation tasks (such as between bank1 ‘side of the river’ and bank2 ‘financial
institution’), a context window of three words on either side is generally sufficient, and LLMs
now match human performance on the task [4, 1]. In contrast, in arithmetic expressions the
tokens are unpredictable based on local context, and proper parenthesization, a task infamously
hard for humans [5] (consider ‘the milk the rat the cat the dog chased caught sought curled’)
is very relevant.

Approach taken An LM can be seen as a sequence of transformations, each of which pro-
duces a vector representation of the input data. The focus of our project is understanding what
kind of representations emerge during learning and how they interact with the model’s ability
to solve various downstream tasks.

We consider learned representations both as a window that allows us to analyse the inner work-
ings of the LM as well as a funnel through which one can inject background knowledge. Proper
data represenation plays a crucial role in LM performance and in mathematical theories we
often have some a priori expectations about what a good representation should look like. For
example, given a set of arithmetic expressions, we would expect those that evaluate to a similar
value to be represented close to each other. We can leverage such background knowledge by
adding an explicit auxiliary learning task that encourages a certain structure on the represen-
tation. Such auxiliary tasks are frequent in machine learning and are referred to as probing [1]
in NLP.

We created a flexible dataset generator and a decoder-only transformer implementation that
allows for co-training on several different tasks and datasets, with facilities for inspecting and
visualizing the models both during and after training.

The tasks that we consider come from two categories. First, we implemented classical language
modelling tasks such as masked language modelling (predict the tokens missing from the input)
and generative modelling (given a partial input string, predict the next token), which we refer
to as the language task. Second, we provide auxiliary tasks related to the structure of the
representation, referred to as the embedding task.

*First two authors contributed equally.
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Embedding Task A transformer produces context dependent vector representations at the
output of each transformer block for each input token. It also provides a special token (the [CLS]
at the beginning of each input string) whose representation can be treated as the embedding
of the entire input sequence. Furthermore, representations internal to a transformer block also
emerge that are factorised into three components (key, query and value vectors). At this phase
of our work, we focus on the sentence embedding associated with the [CLS] token. We have the
choice to focus on any particular block of the model and optimise its sequence embedding.

In order to actually induce the learning procedure to store sequence specific useful information
in this vector, a suitable learning task has to be selected. It is highly nontrivial to decide
what kind of embedding structure should be enforced for a given a mathematical theory, and
it requires experimentation. Here, we just give some illustrative intuitions:

• Two logical formulae that are equisatisfiable (e.g. ¬(p∧q) and ¬p∨¬q) should be mapped
close to each other.

• The greater the distance between the values of two arithmetic expressions, the greater
the distance in the embedding space (e.g. 23 + 12 should be closer to 40 than to 1000).

Current Status We are experimenting with arithmetic problems of varying complexity:

• Solve formula: Compute the value of an arithmetic formula, e.g. (4− 3) + 23 → 24
• Derive formula: Compute the value of an arithmetic formula with intermediary results,
e.g. (4− 3) + 23 → 1 + 23 → 24

• Solve equations: Compute the solution of a set of linear equations, e.g. 2X + Y =
7, X + 2Y = 8 → X = 2, Y = 3

• Derive equations: Compute the solution of a set of linear equations with intermediary
results of gaussian elimination, e.g. 2X + Y = 7, X + 2Y = 8 → . . . → X = 2, Y = 3

Our embedding task follows [3]: we take sets of expressions, two of which have equal value and
we train the model to embed the expressions with equal value closer to each other than other
expressions.

We have conducted initial probing experiments and the results are not yet conclusive. We
hope to see patterns in the embeddings emerging in models trained to very high precision, as
well as improvement on the language tasks for some datasets when trained with an auxiliary
embedding task. We expect to report results by the time of the meeting.

Conclusion We built training and analysis infrastructure for a language model to be trained
on mathematical problems provided in textual format. The system can be trained with auxiliary
learning objectives related to the structure of latent representations of mathematical expres-
sions. We hope to uncover the interplay between the model’s learned representations and its
performance on the final task.
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