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Abstract
The advent of Large Language Models (LLMs) has led to an unprecedented speed of improvement

in AI capabilities. For instance, within three years of introducing the MATH dataset for mathematical
reasoning in 2021 , models have attained an accuracy of 85% in 2024 – a 12-fold improvement from the
original 6.9%. In addition, this achievement is merely 10% short of the 95% accuracy level reported for a
three-time International Mathematical Olympiad (IMO) gold medalist. Therefore, as AI models become
more capable and quickly begin to approach ceiling performances on established benchmarks, there arises
a need for more challenging and long-lasting evaluation benchmarks. Therefore, we introduce the
Putnam-MATH dataset, a unique collection of higher level mathematics problems that require expert-
level understanding solving. Our dataset is characterized by its challenging nature, with participants
– aspiring professional mathematicians (undergraduate participants) – scoring a median of zero in the
Putnam competition in 2008. In addition, numerous Putnam Fellows have achieved prominence in
mathematics and other disciplines, including four who have won the Fields Medal — Terence Tao, John
Milnor, David Mumford, and Daniel Quillen — and two who have received Nobel Prizes in Physics,
Richard Feynman and Kenneth Wilson. Motivated by the risks of data contamination and goal to make
a long-lasting benchmark in the era of fast pace of AI progress, we introduced a functional variation to our
dataset. This variation modifies variable names and constants in the problems, keeping the conceptual
and reasoning aspects intact, which helps in avoiding memorization by models with the potential infinite
variations for some problems. Our evaluations demonstrate our benchmark is indeed difficult: GPT-4
gets 14/192 questions correctly, a specialized mathematics model like DeepSeekMath-7B gets 8/192, and
popular 7B open-source models like LLama3-8B score 6/192. For our dataset’s functional variation, the
numbers are even more stringent, with GPT-4 scoring 2/35, DeepSeekMath-7B 3/35, and LLama3-8B
0/35, further validating the challenging nature of our tests. The challenging nature of our datasets, both
in their original and varied forms, not only tests the limits of current AI capabilities but also paves the
way for new research directions in AI to push the boundaries of deep mathematical reasoning.

1 Methods

1.1 Putnam Static Dataset
To create a challenging dataset for testing the mathematical problem-solving capabilities of large language
models (LLMs), a set of 192 questions was curated from the Putnam Mathematical Competition problems
posed between 1995 and 2023. Drawing inspiration from the MATH dataset by [Hendrycks et al.(2020)Hendrycks, Burns, Basart, Zou, Mazeika, Song, and Steinhardt]
we use latex boxing to capture the answer string for evaluating mathematical understanding in LLMs, e.g.,
boxed{2n}. Boxed answers are crucial for facilitating automated evaluation and ensuring that LLMs gener-
ate precise, unambiguous responses but have the drawback of not directly actual reasoning string. However,
due to the intricate nature of the problems and their solutions, not all Putnam questions could be directly
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Table 1: Performance of various models on the original static and automatically generated variations of the
Putnam-MATH benchmark.

Model Original Static Automatically Generated

Score Percentage Score Percentage
GPT-4o 21/192 10.9% 3/35 8.57%
GPT-4-turbo 14/192 7.29% 2/35 5.71%
GPT-3.5-turbo 6/192 3.13% 0/35 0%
DeepSeekMath7bInstruct 8/192 4.17% 3/35 8.57%
Mistral7B 6/192 3.13% 0/35 0%
LLama3-7B 6/192 3.13% 0/35 0%
Gemma2B 6/192 3.13% 0/35 0%

converted into a format suitable for testing LLMs, as some answers were provided in a prose format rather
than a concise, and boxable answer.

1.2 Putnam Variation Dataset
As previous years’ Putnam problems are available on the Putnam website, there is a possibility that models
have been fed those problems as training data and would thereby have an artificially high accuracy. In order
to properly test the mathematical ability of LLMs and in order to compile a larger testing dataset, we include
functional variations on these problems.

Our functional variations cover a wide range of changes which are detailed below.

1. We significantly alter a problem’s structure e.g. changing “Find solutions to f(x) = sin(x)” to “Find
solutions to f(x) = cos(x)”.

2. We adjust constants within the problem (e.g. changing “Evaluate
∑2022

n=1 an” to “Evaluate
∑5000

n=1 an ”).

3. We change variable names (e.g. changing “Solve x+ 5 = 7” to “Solve b+ 5 = 7”).

We currently have functional variations of seven different Putnam questions. Each variation is capable of
generating an infinite number of unique, equal-difficulty questions. For our model evaluation, we generated
five unique questions per variation, giving us a total of 35 variation questions.

2 Results
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3 Supplementary Material

4 Conclusion
In conclusion, the Putnam-MATH dataset and its functional variation provide a rigorous and long-lasting
benchmark for evaluating the mathematical reasoning capabilities of AI models. By introducing a challenging
and diverse set of problems, we aim to drive the development of more advanced AI systems that can excel
in complex mathematical problem-solving. Our work serves as a foundation for future research in pushing
the boundaries of AI capabilities in mathematics and beyond.

Figure 1: Demonstrates the moderate correlation between boxed answers accuracy and teacher
forced accuracy on the MATH math data set. Shaded areas correspond to 95% confidence intervals.
We evaluated the four model across seven mathematical topics of the MATH data set: Number Theory,
Intermediate Algebra, Algebra, Geometry, Precalculus, Counting and Probability, Prealgebra. Using teacher
forcing results a clear negative correlation conditioned on model, but over all is not reliable.

4.1 Calculating Aggregated ROSCOE
ROSCOE is a collection of metrics each designed to measure a different aspect of reasoning. In the original
paper, the authors gave no way of combining the different metrics into an aggregate score of correctness.
The focus of our work is to benchmark model performance which requires a single comparable metric for
each dataset. In total, there are 19 different base metrics in ROSCOE, which we label mi for 1 ≤ i ≤ 19;
computing each of these on a large dataset is time consuming, so ideally we could restrict ourselves to a few
of the most useful metrics. We learn a simple linear combination of the metrics and employ L1 regularization
to promote sparsity. Thus we are trying to find the coefficients αi to construct our aggregated metric M as
follows

M =

k∑
i=1

αimi

where αi are sparse. We find that learning αi on all datasets results in a correlation with boxed accuracy of
0.919.
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Figure 2: Demonstrates the moderate correlation between boxed answers accuracy and teacher
forced cross entropy on the MATH math data set. Shaded areas correspond to 95% confidence
intervals. We evaluated the four model across seven mathematical topics of the MATH data set: Number
Theory, Intermediate Algebra, Algebra, Geometry, Precalculus, Counting and Probability, Prealgebra. Using
teacher forced cross entropy results in more comparable results across datasets and models, with trends
between models and datasets matching, but still too dependent on confounding factors.

model TFA TFCE
Deepseek-7b-Instruct 0.439272 0.399167
Deepseek-7b-RL 0.285773 0.317733
LLeMMA-7b 0.100595 0.104666
Mistral-7b-Instruct-v0.2 0.097707 0.131686
Morph-7b-v0 0.060026 0.053734
Tora-13b-v1.0 0.311476 0.389184
Tora-7b-v1.0 0.376615 0.331863

Figure 3: R2 between metric and ground truth accuracy for different models. Results are fairly
similar between TFA and TFCE.

4



Figure 4: Demonstrates the low to medium correlation between boxed answers accuracy and
COMETKIWI on the MATH math data set. Shaded areas correspond to 95% confidence intervals.
R2 is given in parentheses in the legend. We evaluated the multiple model across seven mathematical topics
of the MATH data set: Number Theory, Intermediate Algebra, Algebra, Geometry, Precalculus, Counting
and Probability, Prealgebra. Using COMETKIWI results is strong correlations conditioned on model, but
results between models are still not comparable. (Note: COMETKIWI does not use the reference answer
and is fine-tuned for language translation, not mathematical accuracy.)
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Figure 5: Demonstrates the medium to strong correlation between boxed answers accuracy and
XCOMET on the MATH math data set. Shaded areas correspond to 95% confidence intervals. R2

is given in parentheses in the legend. We evaluated the multiple model across seven mathematical topics of
the MATH data set: Number Theory, Intermediate Algebra, Algebra, Geometry, Precalculus, Counting and
Probability, Prealgebra. Using XCOMET results is strong correlations conditioned on model, but results
between models are still not comparable. (Note: XCOMET uses the reference answer and is fine-tuned for
language translation, not mathematical accuracy.)
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Figure 6: Demonstrates the low correlation of accuracy using the boxed answers metric vs
autoregressive cross entropy, both on the MATH math data set. EleutherAI-llema R2 = 0.0631
(red line), Deepskee-ai-deepseek-math-7b-instruct (green line) R2 = 0.248, Deepseek-ai-deepskee-mth-7b-rl
(blue line) R2 = 0.0491, LLM-agents-tora-13b-v1.0 (orange) R2 = 0.422. Shaded areas correspond to 95%
confidence intervals. We evaluated the four model across seven mathematical topics of the MATH data
set: Number Theory, Intermediate Algebra, Algebra, Geometry, Precalculus, Counting and Probability,
Prealgebra. We hypothesize this low correlation suggests perplexity as a bad surrogate for boxed answer
accuracy for comparison between different models (preferred metric, though harsh) used in the MATH data
set math and therefore display the low).
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Figure 7: Relationship between ROSCOE Perplexity Step Max and Boxed Accuracy. (top) metrics are
averaged over all datasets; (bottom) metrics are computed per dataset.8



Figure 8: Generalization performance of Aggregated ROSCOE fit on a single dataset and the remaining
datasets. Each row corresponds to the dataset Aggregated ROSCOE was fit on and each column corresponds
to the dataset correlation to boxed accuracy was calculated with.
ROSCOE is a collection of metrics each designed to measure a different aspect of reasoning. In the original
paper, the authors gave no way of combining the different metrics into an aggregate score of correctness.
The focus of our work is to benchmark model performance which requires a single comparable metric for
each dataset. In total, there are 19 different base metrics in ROSCOE, which we label mi for 1 ≤ i ≤ 19;
computing each of these on a large dataset is time consuming, so ideally we could restrict ourselves to a few
of the most useful metrics. We learn a simple linear combination of the metrics and employ L1 regularization
to promote sparsity. Thus we are trying to find the coefficients αi to construct our aggregated metric M as
follows

M =

k∑
i=1

αimi

where αi are sparse. We find that learning αi on all datasets results in a correlation with boxed accuracy of
0.919.
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Figure 9: Relationship between Aggregated ROSCOE and Boxed Accuracy. Aggregated ROSCOE refers to
the linear model of the 5 most important ROSCOE metrics. (top) metrics are averaged over all datasets;
(bottom) metrics are computed per dataset.
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Figure 10: Relationship between XCOMET and Boxed Accuracy. (top) metrics are averaged over all datasets;
(bottom) metrics are computed per dataset.
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