
Proof By Abduction in Isabelle/HOL

Yutaka Nagashima1 and Daniel Sebastian Goc2

1 Independent
2 University of Cambridge

Abstract

When proving an inductive problem, we often prove auxiliary lemmas that are useful for
proving the original problem. If these auxiliary lemmas themselves are challenging, we must
introduce more lemmas to prove these lemmas. To automate such multi-step conjecturing,
we developed Abduction Prover. Given a proof goal, Abduction Prover conjectures a
series of lemmas and attempts to prove the original goal using these lemmas. Our working
prototype of Abduction Prover for Isabelle/HOL is publicly available on GitHub.

All major theorem provers for higher-order logics offer tools called tactics. Tactics are
designed to transform proof goals into easier formats. Users apply suitable tactics with certain
arguments to proof goals until the tactics solve their proof goals completely.

When proving challenging statements, experienced users often introduce auxiliary lemmas
explicitly and use these lemmas to prove the final goals. Many believe that this approach is
superior to developing long sequences of tactics: these lemmas make the resulting proof scripts
more declarative and readable, and they can be utilized to tackle other challenging problems.
If the auxiliary lemmas themselves are challenging, more conjectures should be introduced that
are useful for proving the challenging lemmas.

In this abstract, we introduce Abduction Prover, a framework designed to search for useful
conjectures recursively to prove the goal until the proof is completed using these conjectures.
The overall workflow of Abduction Prover is shown in Algorithm 1, although some definitions
are omitted due to space restrictions. Given a proof goal, this algorithm builds its proof and
auxiliary lemmas by expanding a rooted directed graph.

Algorithm 1 Abduction Prover

1: graph← set root goal
2: depth← 1
3: while depth ≤ Limit ∧ ¬ proved graph do
4: depth← depth+ 1
5: nodes ← get active nodes graph
6: fold expand node nodes graph
7: end while
8: show graph

We call this graph an abduction graph,
as abductive reasoning is executed on this
graph to identify conjectures useful for prov-
ing the original goal, which appears as the
root node. The graph consists of two kinds
of nodes (and-nodes and or-nodes) and two
kinds of edges (labeled edges and unlabeled
edges). Each node represents a proof goal.

Intuitively, or-nodes represent choices,
while and-nodes represent obligations. When
an or-node points to multiple and-nodes, it
means the or-node can be proven if one of the and-nodes directly pointed to by the or-node can
be proven. On the other hand, when an and-node points to multiple or-nodes, it means the
and-node can be proven if all the or-nodes directly pointed to by the and-node are proven.

Figure 1 displays an example of an abduction graph. This graph demonstrates that Algo-
rithm 1 has already worked on the root node twice to conjecture auxiliary lemmas (conjecturing-
A and conjecturing-B) and once to apply a tactic (tactic-B). Nodes encircled by single lines
represent or-nodes, while nodes enclosed by double lines signify and-nodes. For example, the
root node points to two and-nodes via solid lines, which means that to prove the goal, only one
of the two and-nodes must be proven.



Proof By Abduction in Isabelle/HOL Nagashima and Goc

Goal

lemma-A subgoal-B1 ∧ subgoal-B2 lemma-C

subgoal-B1 subgoal-B2 lemma-C

con
ject

urin
g-A

ta
ctic-B

conjecturing-C

Figure 1: An Example Abduction Graph.

This figure shows that Algorithm 1 has produced two conjectures by explicit conjecturing:
lemma-A and lemma-C, while it has also produced another conjecture (subgoal-B1 ∧ subgoal-
B2) by applying a tactic. The solid edge connecting the root to lemma-C should be interpreted
as follows: Algorithm 1 confirmed that we can prove the root node using lemma-C as assump-
tion. On the other hand, the dashed edge from the root to lemma-A indicates that Algorithm
1 conjectured lemma-A but Algorithm 1 failed to prove the root using lemma-A as assumption.
Since we do not know if lemma-A is useful to prove the root, Algorithm 1 does not connect
lemma-A to the root to keep the size of the graph small.

In addition to explicit conjecturing, Algorithm 1 integrates tactic applications as implicit
conjecturing. For example, Figure 1 indicates that the root node can be reduced into two
subgoals (subgoal-B1 and subgoal-B2) by applying tactic-B, and Algorithm 1 treats the appli-
cation of tactic-B as equivalent to conjecturing two lemmas, subgoal-B1 and subgoal-B2. In
general, one tactic application can return multiple subgoals, which Algorithm 1 groups into a
single and-node. Then, from such an and-node, Algorithm 1 produces or-nodes, each of which
corresponds to a subgoal in the parent and-node.

We call Algorithm 1 Abduction Prover because it continually conjectures new auxiliary
lemmas for the leaf or-nodes recursively in each iteration until enough lemmas have been proven
to establish the root node. Furthermore, we call the underlying data structure an abduction
graph rather than an abduction tree because, in general, Algorithm 1 may produce the same
conjectures multiple times from different nodes.

Our working prototype of Abduction Prover for Isabelle2023 [10] is available for public
access on GitHub [1] and its demo is available on YouTube [2]. We also added two screenshots
from the YouTube video in Appendix. While page limitations prevent us from delving into the
technical challenges Abduction Prover addresses, it is worth noting that it offers the following
benefits:

• It focuses on useful conjectures out of many produced ones by checking if the conjectures
are useful for proving the original goal.

• It integrates explicit conjecturing and tactic applications into one monolithic framework.
• It integrates many existing tools, such as quickcheck [3], sledgehammer [11], PSL [8],
smart induct [5, 6], template-based conjecturing [9], and SeLFiE [4, 7], to keep the size
of the abduction graph small.

2



Proof By Abduction in Isabelle/HOL Nagashima and Goc

Appendix

Figure 2: A screenshot from the demo video. The prove command invoked the
Abduction Prover, which proved the final goal, ((double x) = (t2 x x)), as lemma

original goal 5480488 by creating and proving the two auxiliary lemmas.

Figure 3: A screenshot from the demo video. The Abduction Prover proved the given goal by
creating and proving the 13 lemmas.

3



Proof By Abduction in Isabelle/HOL Nagashima and Goc

References

[1] https://github.com/data61/PSL/releases/tag/v0.2.7-alpha.

[2] https://youtu.be/rXU-lJxP_GI.

[3] Lukas Bulwahn. The new quickcheck for Isabelle - random, exhaustive and symbolic testing under
one roof. In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second
International Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings, volume
7679 of Lecture Notes in Computer Science, pages 92–108. Springer, 2012.

[4] Yutaka Nagashima. LiFtEr: Language to encode induction heuristics for Isabelle/HOL. In Pro-
gramming Languages and Systems - 17th Asian Symposium, APLAS, Nusa Dua, Bali, Indonesia,
2019.

[5] Yutaka Nagashima. Smart induction for Isabelle/HOL (tool paper). In Proceedings of the 20th
Conference on Formal Methods in Computer-Aided Design – FMCAD 2020, 2020.

[6] Yutaka Nagashima. Faster smarter proof by induction in Isabelle/HOL. In Zhi-Hua Zhou, editor,
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021, pages 1981–1988. ijcai.org, 2021.

[7] Yutaka Nagashima. Definitional quantifiers realise semantic reasoning for proof by induction. In
Laura Kovács and Karl Meinke, editors, Tests and Proofs - 16th International Conference, TAP
2022, Held as Part of STAF 2022, Nantes, France, July 5, 2022, Proceedings, volume 13361 of
Lecture Notes in Computer Science, pages 48–66. Springer, 2022.

[8] Yutaka Nagashima and Ramana Kumar. A proof strategy language and proof script generation for
Isabelle/HOL. In Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th Interna-
tional Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings,
volume 10395 of Lecture Notes in Computer Science, pages 528–545. Springer, 2017.

[9] Yutaka Nagashima, Zijin Xu, Ningli Wang, Daniel Sebastian Goc, and James Bang. Template-
based conjecturing for automated induction in isabelle/hol. In Hossein Hojjat and Erika Ábrahám,
editors, 10th IPM International Conference on Fundamentals of Software Engineering, Conference
Pre-Proceedings, pages 111–125. IPM, 2022.

[10] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - a proof assistant for
higher-order logic. Springer, 2002.

[11] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with sledge-
hammer, a practical link between automatic and interactive theorem provers. In Geoff Sutcliffe,
Stephan Schulz, and Eugenia Ternovska, editors, The 8th International Workshop on the Imple-
mentation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011, volume 2 of EPiC Series
in Computing, pages 1–11. EasyChair, 2010.

4

https://github.com/data61/PSL/releases/tag/v0.2.7-alpha
https://youtu.be/rXU-lJxP_GI

	References

