
Leveraging Large Language Models for Autoformalizing
Theorems: A Case Study

Michail Karatarakis

Radboud University Nijmegen, The Netherlands

Motivation

Large Language Models LLM show promise in automating tasks in formal theorem proving, yet they
encounter challenges such as inaccuracies and handling complex proofs. In our investigation, we exper-
iment with the Mistral-Large LLM for autoformalization [5, 4, 7, 3]. in mathematics using the Lean 4
theorem prover [6] and its mathematical library, mathlib [1]. We focus on autoformalizing the following
two theorems in number theory.

Theorem 01 (Lemma 8.1, [2]) Let 0 < M < N, and ajk be rational integers satisfying |ajk| ≤
A where 1 ≤ A, 1 ≤ j ≤ M and 1 ≤ k ≤ N. Then there exists a set of rational integers x1..., xN ,

not all zero, satisfying aj1x1 + · · · ajNxN = 0 and |xk| ≤ (NA)
M

N−M .

Theorem 02 (Lemma 8.2, [2]) Let 0 < p < q, and akl be rational integers satisfying |akl| ≤ A where
A ≥ 1, 1 ≤ k ≤ p and 1 ≤ l ≤ q. Then there exists a set of rational integers ξ1 . . . , ξq, not all zero,

satisfying ak1ξ1 + · · ·+ akqξq = 0 and |ξl| < c1(1 + (c1qA)
p

q−p).

Our aim is to generate formal proof sketches as the primary output. We first preprocess the source
text [2] to extract relevant mathematical statements in LATEX and experiment with prompt engineering
for autoformalization by initially excluding proofs.

We provide a centralized prompt repository1. The following list presents the first observations from
our ongoing experiments. For more details and the complete informal mathematical text and generated
code, readers should consult Appendix 1.

Observations

– Ensure precision and clarity Ensuring proper text preprocessing for generating the correct def-
initions and proofs is equally significant as the act of prompting itself. One promising strategy for
transcribing definitions involves modifying informal text to align with the formal definition we intend
to use. It is always beneficial to review the existing content in mathlib to facilitate more informed
decision-making in the preprocessing phase.
For instance, in the proof of Lemma 01, −Bj represents the sum of the negative coefficients of yj .
When prompted, Mistral autonomously generated the following definition:

1 let B : Fin M → Z
2 | j =>

∑
k, if a j k < 0 then -a j k else 0

which is syntactically incorrect and also undesirable in our case. After changing the informal text
to ” We define Bj as the sum of the −min(0, ajk) for all ajk.”, Mistral changed its response to the
following :

1 let B : Fin M → N
2 | j =>

∑
k : Fin N, -min 0 (a j k)

which is still syntactically incorrect but closer to what we want.
– Adhere to Lean 4 syntax and conventions Mistral’s training data, likely largely constrained

to Lean 3 syntax (until January 2022), shapes its approach to syntax. Addressing this requires en-
compassing modifications to notation, replacement of outdated imports, and provision of examples
demonstrating the correct syntax.
For example, in the proof of Theorem 01, Mistral employed conventional mathematical notation, such
as # for the cardinality of sets, which diverges from Lean’s syntax.

1 https://github.com/mkaratarakis/autoformalization-LLMs

2 Michail Karatarakis & S. Author

1 -- Prove that the number of sets of x_k is (H + 1)^N
2 have hXCount : # { x : Fin N → Z | ∀ k, 0 ≤ x k ∧ x k ≤ H } = (H + 1) ^ N :=

sorry

In many cases, Mistral encountered difficulties in introducing certain notions, such as the aforemen-
tioned sum Bj , and many attempts led to the introduction of syntax that was invalid in both Lean
3 and Lean 4.

1 let B : Fin M → Z
2 B j :=

∑
k, -min 0 (a j k)

To address such issues, we used examples as prompts.
Here is an example of the correct syntax for "let" statements:

1 let y : Fin M → Z
2 | j =>

∑
k : Fin N, a j k ∗ x k

should change to

1 let y : Fin M → Z := fun j =>
∑

k : Fin N, a j k ∗ x k.

Do the same for "C" and "B".
Finally, after managing to bring the proof sketches of both theorems to a reasonable state, we were
unable to ensure that Mistral adhered faithfully to Lean 4 syntax despite continuous efforts. In some
cases, Mistral would refuse to replace the begin with by and to eliminate the end commands. In other
cases, Mistral would agree to make these modifications but refuse to remove the commas at the end
of the sub-proof statements.

– Handling Type Mismatch Errors Type mismatch errors, commonly encountered in theorem
proving, indicate disparities between expected and actual types. For instance, Mistral might define
Bj as:

1 def B : Fin M → N := fun j =>
∑

k : Fin N, -min 0 (a j k)

and the type of B had to be updated to Fin M → Z to match the type of a.
– Addressing Autonomy Challenges As we have already seen, one of the main challenges lies in

LLMs autonomously generating the prerequisite definitions and theorems.

1. Definitions: Establishing definitions is widely recognized as one of the most challenging aspects of
formalization. For instance, Theorem 01 concerns rational integers, but a single attempt resulted
in the following definition:

1 abbrev RationalInteger := Int

despite Mistral’s understanding that a rational integer is simply an integer.
The issues that are most difficult to solve arise when the model is prompted to formalize definitions
that it hasn’t encountered before. For example, let K be an algebraic number field of degree h,
and let α be an algebraic integer in K. We shall denote by |α | the maximum of the modulus of
the conjugates α(i) with 1 ≤ i ≤ h of α, that is, |α |= max1≤i≤h

∣∣α(i)
∣∣.

We aim to assist Mistral in formulating the definition of |α |. Following the initial prompt, the
expected response results to a familiar pattern, with Mistral attempting independently and se-
lectively to delineate the prerequisite definitions.

1 -- Define the conjugates of an algebraic integer
2 def conjugates (α : K) : List K :=
3 -- insert definition here
4 -- Define the house of an algebraic integer
5 def house (α : K) : R :=

6 (conjugates α).map (fun x => abs x).max′

The customary approach to tackling these challenges involves supplying the LLM with definitions
sourced from existing libraries such as mathlib, or ones provided by the user.

2. Proofs Dealing with proofs poses challenges due to Lean’s syntax and the LLM’s tendency to
prove things autonomously. Common issues include selectively proving sub-proofs, using arbitrary
identifiers, mixing Lean 3 and Lean 4 syntax, and utilizing theorems from Lean’s 3 mathlib.
Thus, it’s important to review the informal proof steps, break down complex informal proofs into
manageable components, and supply the LLM with the relevant theorems from mathlib, or ones
provided by the user.

Leveraging Large Language Models for Autoformalizing Theorems: A Case Study 3

References

1. mathlib Community.: The Lean mathematical library. In: Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2020). pp. 367–381 (2020)

2. Hua, L.K.: Introduction to number theory. Springer Science & Business Media (2012)
3. Jiang, A.Q., Welleck, S., Zhou, J.P., Lacroix, T., Liu, J., Li, W., Jamnik, M., Lample, G., Wu, Y.: Draft,

sketch, and prove: Guiding formal theorem provers with informal proofs. In: ICLR (2023)
4. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and semantic parsing of mathe-

matics. In: ITP. LNCS, vol. 10499, pp. 12–27 (2017)
5. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based translation methods between

informal and formal mathematics: Project description. In: CICM 2014. LNCS, vol. 8543, pp. 435–439 (2014)
6. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean Theorem Prover (System

Description). In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction - CADE-25. pp. 378–388. Springer
International Publishing, Cham (2015)

7. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of informal to formal mathematics.
In: CICM’18. LNCS, vol. 11006, pp. 255–270

1 Appendix

We showcase the prerequisite definitions, informal statements, and proofs for two lemmata (pages 489-490,
[2]), alongside the proof sketches obtained through our Mistral experiments.

Theorem 11 (Lemma 8.1 ([2]) Let 0 < M < N, and ajk be rational integers satisfying |ajk| ≤
A where 1 ≤ A, 1 ≤ j ≤ M and 1 ≤ k ≤ N. Then there exists a set of rational integers x1..., xN ,

not all zero, satisfying aj1x1 + · · · ajNxN = 0, 1 ≤ j ≤ M and |xk| ≤ (NA)
M

N−M , 1 ≤ k ≤ N.

Proof. Let H = (NA)(
M

N−M). Then NA < (H + 1)(
N−M

M).

Hence (NAH) + 1 ≤ NA(H + 1) and NA(H + 1) < (H + 1)
N
M

Define
yj = aj1x1 + · · · ajNxN , 1 ≤ j ≤ M. (1)

We define Bj as the sum of the −min(0, ajk) for all ajk.
Similarly, we define Cj as the sum of the max(0, ajk) for all ajk.
For any set of integers (x1, . . . , xN) satisfying

0 ≤ xk ≤ H, 1 ≤ k ≤ N. (2)

we have that −BjH ≤ yj ≤ CjH, and Bj + Cj ≤ NA.
The number of sets of (x1, . . . , xN) satisfying

0 ≤ xk ≤ H, 1 ≤ k ≤ N (3)

is (H + 1)N , and the corresponding number of set of sets (y1, . . . , yM) is at most (NAH + 1)M .
It follows from the fact

(NAH) + 1 ≤ NA(H + 1) < (H + 1)
N
M (4)

and the pigeonhole principle that there must be two sets (x′
1, . . . , x

′
N) and (x′′

1 , . . . , x
′′
N) which correspond

to the same set (y1, . . . , yM).
Let xk = x′

k − x′′
k ,(1 ≤ k ≤ N) so that (x1, . . . , xN) is now the required set satisfying

aj1x1 + · · · ajNxN = 0, 1 ≤ j ≤ M (5)

and

|xk| ≤ (NA)
M

N−M , 1 ≤ k ≤ N. (6)

After several prompts, the system successfully produced the correct syntax and came up with the
statement and a proof sketch of the lemma. Through further iterations, we achieved a stage where
the autoformalization of both the primary statement and its sub-proof statements became reasonably
accurate.

4 Michail Karatarakis & S. Author

1 theorem lemma81 (M N : N) (hMN : 0 < M ∧ M < N) (A : R) (hA : 1 ≤ A)
2 (a : Matrix (Fin M) (Fin N) Z) (ha : ∀ j k, |a j k| ≤ A) :

3 ∃ x : Fin N → Z, (∃ k, x k ̸= 0) ∧ ∀ j,
∑

k, a j k ∗ x k = 0
4 ∧ ∀ k, |x k| ≤ (N ∗ A)^(M / (N - M)) := by
5 -- Define H
6 let H := (N ∗ A) ^ (M / (N - M))
7

8 -- Define X as the set of all sets of x_k satisfying 0 ≤ x_k ≤ H
9 let X : Set (Fin N → Z) := { x | ∀ k, 0 ≤ x k ∧ x k ≤ H }

10

11 -- Define Y as the set of all corresponding sets of y_j

12 let Y : Set (Fin M → Z) := { y | ∃ x ∈ X, ∀ j, y j =
∑

k, a j k ∗ x k }
13

14 -- Prove that NA < (H+1)^((N-M)/M)
15 have hNA : N ∗ A < (H + 1) ^ ((N - M) / M) := by sorry
16

17 -- Prove that (NAH) + 1 ≤ NA(H + 1)
18 have hNAH : (N ∗ A ∗ H) + 1 ≤ N ∗ A ∗ (H + 1) := by sorry
19

20 -- Prove that NA(H + 1) < (H + 1)^(N/M)

21 have hNAH′ : N ∗ A ∗ (H + 1) < (H + 1) ^ (N / M) := by sorry
22

23 -- Define y_j for a given x

24 let y (x : Fin N → Z) : Fin M → Z := fun j =>
∑

k : Fin N, a j k ∗ x k
25

26 -- Define B_j and C_j

27 let B : Fin M → Z := fun j =>
∑

k : Fin N, -min 0 (a j k)
28

29 let C : Fin M → Z := fun j =>
∑

k : Fin N, max 0 (a j k)
30

31 -- Prove that for any set of integers x_k satisfying 0 ≤ x_k ≤ H,
32 -- -B_j∗H ≤ y_j ≤ C_j∗H and B_j + C_j ≤ N∗A
33 have hYBound : ∀ (x : Fin N → Z), (∀ k, 0 ≤ x k ∧ x k ≤ H) →
34 ∀ j, -B j ∗ H ≤ y x j ∧ y x j ≤ C j ∗ H ∧ B j + C j ≤ N ∗ A := by sorry
35

36 -- Prove that X and Y have finite cardinalities
37 haveI : Fintype X := by sorry
38

39 haveI : Fintype Y := by sorry
40

41 -- Prove that the number of sets of x_k is (H + 1)^N
42 have hXCount : Finset.card X.toFinset = (H + 1) ^ N := by sorry
43

44 -- Prove that the number of corresponding sets of y_j is at most (NAH + 1)^M
45 have hYCount : Finset.card Y.toFinset ≤ (N ∗ A ∗ H + 1) ^ M := by sorry
46

47 -- Prove that the cardinality of X is larger than the cardinality of Y
48 have hCardXY : Finset.card X.toFinset > Finset.card Y.toFinset := by sorry
49

50 -- Apply the pigeonhole principle to find two sets of x_k that correspond to the
same set of y_j

51 have hPigeonhole : ∃ (x′ x′′ : Fin N → Z) (_ : x′ ∈ X) (_ : x′′ ∈ X), ∀ j, y x′ j = y

x′′ j := by sorry
52

53 -- Extract the two sets of x_k that correspond to the same set of y_j

54 rcases hPigeonhole with ⟨x′, x′′, hx′, hx′′⟩
55

56 -- Define x_k as the difference between the two sets of x_k

57 let x : Fin N → Z := fun k => x′ k - x′′ k
58

59 -- Prove that x_k satisfies the required conditions
60 have hX : (∃ k, x k ̸= 0)

61 ∧ ∀ (j : Fin M),
∑

k : Fin N, a j k ∗ x k = 0

Leveraging Large Language Models for Autoformalizing Theorems: A Case Study 5

62 ∧ ∀ (k : Fin N), |x k| ≤ (↑N ∗ A) ^ (M / (N - M)) := sorry
63

64 -- Complete the proof by existential introduction

65 exact ⟨x, hX⟩

Example 2

Let K be an algebraic number field of degree h, and let β1, . . . , βh be an integer basis, so that every
integer in K has the unique representation a1β1 + . . .+ ahβh where a1, . . . , ah are rational integers. We
shall denote by |α | the maximum of the modulus of the conjugates α(i) with (1 ≤ i ≤ h) of α, that is

|α |= max
1≤i≤h

∣∣∣α(i)
∣∣∣ .

The subsequent step is to assist Mistral in formulating the definition of the house of an algebraic
integer. Following the initial prompt, the expected response follows a familiar pattern, with Mistral
attempting independently to delineate the prerequisites but without achieving success.

1 -- Define the conjugates of an algebraic integer
2 def conjugates (α : K) : List K :=
3 -- insert definition here
4

5 -- Define the house of an algebraic integer
6 def house (α : K) : R :=

7 (conjugates α).map (fun x => abs x).max′

Additionally, Mistral encounters difficulty in completing specific definitions, such as conjugates. The
customary approach in such cases involves furnishing the LLM with foundational definitions that it cannot
generate autonomously but are already available in mathlib. A few more prompts eventually led the LLM
to propose the following definition:

1

2 -- Define the house of an algebraic integer
3 def house (α : K) : R :=
4 let embeddings := NumberField.Embeddings.range_eval_eq_rootSet_minpoly α
5 (embeddings.map (fun x => abs x)).max′

Subsequently, efforts were directed towards rectifying this definition, and the following prompts were
formulated accordingly. As a result, a partial formalization was successfully attained.

1 variable {K : Type∗} [Field K] [NumberField K]
2

3 instance : Algebra Q K := sorry
4

5 -- Define a theorem stating that the set of absolute values of the conjugates of an
algebraic integer is nonempty

6 theorem nonempty_conjugates_abs (α : K) :
7 (Set.toFinset (Set.image Complex.abs (Polynomial.rootSet (minpoly Q α) C

))).Nonempty := sorry
8

9 -- Define the house of an algebraic integer
10 noncomputable def house (α : K) : R :=

11 Finset.max′ (Set.toFinset (Set.image Complex.abs (Polynomial.rootSet (minpoly Q α) C
)))

12 (nonempty_conjugates_abs α)

The next theorem we aim to address is as follows:

Theorem 12 (Lemma 8.2 [2]) Let 0 < p < q, and akl be rational integers satisfying |akl| ≤ A where
A ≥ 1, 1 ≤ k ≤ p and 1 ≤ l ≤ q. Then there exists a set of rational integers ξ1 . . . , ξq, not all zero,
satisfying

ak1ξ1 + · · ·+ akqξq = 0, 1 ≤ k ≤ p, 1 ≤ l ≤ q. (7)

and
|ξl| < c1(1 + (c1qA)

p
q−p) (8)

6 Michail Karatarakis & S. Author

Proof. Let
ξl = xl1β1 + · · ·+ xlhβh, (1 ≤ l ≤ q) (9)

where x1l, . . . , xlh are rational integers.
Let aklβr = aklr1β1 + · · · aklrhβh

where aklr1, . . . , aklrh are also rational integers. For 1 ≤ k ≤ p, we have, from ak1ξ1 + · · · akqξq =
0, 1 ≤ k ≤ p , 1 ≤ l ≤ q, that

0 =

q∑
l=1

aklξl (10)

=

q∑
n=1

akl

h∑
r=1

xlrβr (11)

=

h∑
n=1

q∑
l=1

xlr

h∑
r=1

aaklruβu (12)

=

h∑
u=1

(
h∑

r=1

q∑
l=1

aklruxlr

)
βu (13)

Since β1, . . . , βh are linearly independent we have the hp number of equations

h∑
r=1

q∑
l=1

aklruxlr, 1 ≤ u ≤ h, 1 ≤ k ≤ p (14)

with hq number of unknowns.
From aklβr = aklr1β1 + · · · aklrhβh, and our remark preceeding Lemma 8.1 we see that

| aklru | ≤ c max
1≤i≤h

β(i)A (15)

≤ c2A. (16)

It now follows from Lemma 8.1 that the system (8) has a non trivial set of solutions in rational integers
satisfying

| xlr |≤ 1 + (hqc2A)
p

(p−q) , 1 ≤ l ≤ q and 1 ≤ r ≤ h. (17)

Therefore

| ξl | ≤| xl1 | | β1 |+ · · ·+ | xlh | | βh |

≤ c2h(1 + (hqc2A)
p

(q−p)). (18)

Taking c1 = c2h the lemma is proved.

After some prompting we managed to get the statement of the theorem almost correct but when
prompted to remove commas by specifying all the have statements, the system consistently responded in
the same manner – the system flagged the length of the message as excessive and advised shortening it for
handling. Consequently, it became impossible to proceed with that particular chat session. Nevertheless,
following a new chat session and several prompts, we succeeded in obtaining a reasonable proof sketch of
the lemma.

1 variable {K : Type∗} [Field K] [NumberField K] (b : Basis
(Module.Free.ChooseBasisIndex Z (NumberField.ringOfIntegers K)) Q K)

2

3 instance : Algebra Q K := sorry
4

5 -- Define a theorem stating that the set of absolute values of the
6 --conjugates of an algebraic integer is nonempty

Leveraging Large Language Models for Autoformalizing Theorems: A Case Study 7

7 theorem nonempty_conjugates_abs (α : K) :
8 (Set.toFinset (Set.image Complex.abs (Polynomial.rootSet (minpoly Q α) C))).Nonempty

:= sorry
9

10 -- Define the house of an algebraic integer
11 noncomputable def house (α : K) : R :=

12 Finset.max′ (Set.toFinset (Set.image Complex.abs (Polynomial.rootSet (minpoly Q α) C
)))

13 (nonempty_conjugates_abs α)
14

15 abbrev coeffs (α : K) : Fin (finrank Q K) → Z := sorry
16

17 -- Formalize the statement of the remark
18 theorem remark (α : K) :
19 ∀ (i : Fin (finrank Q K)), |coeffs α i| ≤ c ∗ house α := sorry
20

21 abbrev c2 : Z := sorry
22

23 variable (b : Basis (Module.Free.ChooseBasisIndex Z (NumberField.ringOfIntegers K)) Q
K)

24

25 variable (σ : K →+∗ C)
26

27 theorem lemma82 (p q : N) (hpq : 0 < p ∧ p < q) (A : R) (hA : 1 ≤ A)
28 (a : Matrix (Fin p) (Fin q) (O K)) (h_bound : ∀ k l, house ((algebraMap (O K) K) (a

k l)) ≤ A) :

29 ∃ ξ : Fin q → Z, ξ ̸= 0 ∧ ∀ k, (
∑

l, a k l ∗ ξ l = 0) ∧ ∀ l, Complex.abs (σ (ξ l)) <
c2

∗ (1 + (c2
∗ q ∗ A ^ (p / (h - p))) ^ (1 / (q - p))) :=

30 by

31 -- Define the matrix a′ by mapping each entry of a to its absolute value

32 have a′ : Matrix (Fin p) (Fin q) Z := sorry
33

34 -- Define the hypothesis ha′ by applying the house function to each entry of a

35 have ha′ : ∀ j k, |a′ j k| ≤ A := sorry
36

37 -- Apply Lemma 8.1 to get a non-trivial set of solutions to the system of equations

38 obtain ⟨x′, hx′, hx′_bound⟩ := lemma81 p q hpq A hA a′ ha′

39

40 -- Define ξ in terms of the coefficients x′

41 have ξ : Fin q → K := fun i =>
∑

j, x′ i ∗ b j
42

43 -- Expand the equation a ∗ ξ = 0 and rearrange to get a system of hp equations with
hq unknowns

44 have eq1 : ∀ k,
∑

l, a k l ∗ ξ l = 0 := sorry
45

46 -- Bound the complex absolute values of the ξ′s using the triangle inequality and the

bound on the x′s
47 have bound2 : ∀ l, Complex.abs (σ (ξ l)) < c2

∗ (1 + (c2
∗ q ∗ A ^ (p / (h - p))) ^ (1

/ (q - p))) := sorry
48

49 -- Set c1 = c2 and finish the proof
50 sorry

Despite our continuous efforts to prompt, we were unable to ensure that the LLM adhered to Lean
4 syntax. In some cases Mistral would refuse to replace the begin with by and to eliminate the end
commands. In other cases, it would agree to make this modification but refuse to remove the commas at
the end of the sub-proof statements.

2 Conclusion

During our investigation, establishing necessary concepts and prerequisite theorems posed challenges,
requiring guidance and adjustments to conform to established conventions within the Lean 4 and mathlib

8 Michail Karatarakis & S. Author

frameworks. To streamline the autoformalization of mathematics in Lean 4, we suggest the following
strategies:

1. Provide clear and unambiguous mathematical statements and employ standard mathematical notation
to facilitate better understanding and accurate Lean 4 code generation.

2. Utilize Lean 4 syntax and conventions to ensure adherence to best practices and enhance code read-
ability.

3. Include relevant mathematical definitions and theorems theorems to provide context and improve the
accuracy of Lean 4 code.

4. Present examples of the mathematical concepts to be formalized to facilitate understanding and
improve code accuracy.

5. Simplify complex proofs into smaller, manageable components to enhance comprehension and promote
accurate code generation.

6. Evaluate the generated Lean 4 code, provide feedback, and iterate as necessary to enhance compre-
hension and accuracy in subsequent iterations.

