
On Lemma Conjecturing using Neural, Symbolic and

Neuro-symbolic approaches

Sólrún Halla Einarsdóttir1, Yousef Alhessi2, Emily First2, and Moa Johansson1

1 Chalmers University of Technology, Gothenburg, Sweden.
{slrn, moa.johansson}@chalmers.se

2 University of California, San Diego, USA. {emfirst,yalhessi}@ucsd.edu

Abstract

We present ongoing work in combining Large Language Models (LLMs) and symbolic
tools for lemma conjecturing. Our aim is to develop a neuro-symbolic lemma conjecturing
tool leveraging the best of both symbolic and neural methods.

1 Introduction

Theory exploration is the automatic discovery of interesting conjectures and lemmas. Previ-
ously, we have developed symbolic tools for theory exploration [13, 6] which have been used to
successfully discover, for example, lemmas needed in automated (co)-inductive provers [9, 3, 2].

There has also been prior work on using purely neural methods for conjecturing. An early
result of using large language models (LLMs) for the task of lemma generation used a GPT-2
model trained on Mizar theories [14]. Rabe et al. [12] experimented with a self-supervised ap-
proach. Our pilot study on automated conjecturing with LLMs was presented in [10], and used
GPT-3.5 and GPT-4 out of the box via ChatGPT. Recent work [11] explores conjecturing using
a constrained-decoding approach, guaranteeing well-formed conjectures. However, a common
issue when using purely neural methods for conjecturing is that many of the generated lemmas
can be duplicates, renamings or simply false. This is not the case with symbolic methods, but
they may, on the other hand, miss large conjectures outside their specified search space [10].

Our aim is to develop a neuro-symbolic lemma conjecturing tool leveraging the best of both
symbolic and neural methods. We are now following up on [10] with additional experiments
on neural conjecturing, but also going further to develop a neuro-symbolic approach through
combining the LLM with our work on data-driven conjecturing as presented at AITP 2022 [5].

For a neuro-symbolic approach, the symbolic component will come from an updated ver-
sion of our template-based conjecturing tool RoughSpec [6], which restricts its search space to
properties of specific shapes using templates. For example, the template ?F (?F (X,Y ), Z) =
?F (X, ?F (Y,Z)) describes an associative binary function ?F . In the original version of the
tool, the human user decided which templates to use. In [4], we extracted a dataset of lemma
templates from Isabelle’s Archive of Formal Proofs1 (AFP). We have now updated RoughSpec
to parse templates from files in the format used in [4], so that it now can be run automatically
without user intervention when given a file containing function definitions and a file containing
templates as input. It can also now be run on input functions defined in Isabelle or SMT-LIB
format, not only Haskell functions as previously.

We hypothesize that template-based conjecturing may be suitable as a component of a
neuro-symbolic system, where the neural part suggests suitable templates and the symbolic
part fills in the templates to produce conjectures, discarding any conjecture which is trivial,
trivially false, or already known.

1https://www.isa-afp.org/index.html

https://www.isa-afp.org/index.html


On Lemma Conjecturing Einarsdóttir et al.

2 Ongoing Experiments

We are interested in comparing the results achievable using purely neural conjecturing, purely
symbolic conjecturing, and various neuro-symbolic combination approaches.

2.1 Neural conjecturing

We are experimenting with purely neural lemma generation, letting the LLM predict lemmas
directly given function definitions, similar to [10].

As a first step, using the open-source 7B-parameter Llemma model [1], (a variant of LLama2
fine-tuned on e.g. proof assistant data) we prompted the model with an example of QuickSpec
output (conjectured equational properties) for a set of function definitions and asked it to
generate such output for a different set of function definitions. Our preliminary results indicated
that this is not sufficient to generate useful conjectures. Although the output looks syntactically
correct and many of the conjectures seem to hold, we notice a great deal of repetition and
redundancy. This is not surprising, but rather served as a base-line seeing what results are
achievable using available open-source models “out of the box.”

We’re aware that we can most likely achieve much better results if we fine-tune the models
for lemma conjecturing. In order to do this, we have collected fine-tuning data consisting of
function definitions and lemmas about them from Isabelle’s AFP using the Portal-to-Isabelle
API [8]. To create our training example input-target pairs, we have the target be the lemma
statement and the input be a concatentation of the definitions and constants appearing in
that lemma statement. We have fine-tuned the Facebook OPT 1.3B-parameter pre-trained
model [15] on this data, and sampled from the model to predict relevant lemmas.

2.2 Neuro-symbolic conjecturing

Given function definitions, we want to ask the model to predict lemma templates that are
useful for this context. We can then use symbolic methods (RoughSpec) to fill in the templates,
ensuring we do not get repetitions and false conjectures.

We can also extend this approach to iterate in several rounds (i.e. several calls to the
LLM), interleaved with counter-example checking. Our prior work Baldur [7] showed that
LLMs, when generating a proof of a given theorem, benefit from the Isabelle file context, which
includes related theorems and their proofs. Thus, after each round, the contextual information
gathered, such as theorems about functions of interest, could help the LLM generate templates
in subsequent rounds.

2.3 Evaluation

To evaluate the results of our experiments, we first consider the generated conjectures and find
how many of them are 1) syntactically correct 2) true (no counter-example found by checker).

We plan to evaluate whether the lemma is provable by some chosen methods (such as
Sledgehammer). We will compare the generated conjectures to the output of purely symbolic
conjecturing with QuickSpec and consider the benefits and drawbacks of each respective method
such as how much time and computing resources they need to run.

For further evaluation of the quality of generated conjectures, we can consider coverage, i.e.
how many of the lemmas in a library can we generate (although here one must consider training
data leakage), and evaluate the usefulness of the conjectured lemmas in automated proofs.

2



On Lemma Conjecturing Einarsdóttir et al.

References

[1] Z. Azerbayev, H. Schoelkopf, K. Paster, M. Dos Santos, S. McAleer, A. Q. Jiang, J. Deng, S. Bi-
derman, and S. Welleck. Llemma: An open language model for mathematics. arXiv preprint
arXiv:2310.06786, 2023.

[2] S. H. Einarsdóttir, M. Hajdu, M. Johansson, N. Smallbone, and M. Suda. Lemma discovery and
strategies for automated induction. In C. Benzmüller, M. J. Heule, and R. A. Schmidt, editors,
Automated Reasoning, pages 214–232, Cham, 2024. Springer Nature Switzerland.

[3] S. H. Einarsdóttir, M. Johansson, and J. Å. Pohjola. Into the infinite - theory exploration for
coinduction. In Proceedings of AISC 2018, pages 70–86, 01 2018.

[4] S. H. Einarsdóttir, M. Johansson, and N. Smallbone. Lol: A library of lemma templates for data-
driven conjecturing. In Work-in-progress papers presented at the 15th Conference on Intelligent
Computer Mathematics (CICM 2022) Informal Proceedings, page 22, 2022.

[5] S. H. Einarsdóttir, M. Johansson, and N. Smallbone. Towards neuro-symbolic conjecturing, 2022.
Extended abstract accepted for presentation at the 7th Conference on Artificial Intelligence and
Theorem Proving, AITP 2022.

[6] S. H. Einarsdóttir, N. Smallbone, and M. Johansson. Template-based theory exploration: Dis-
covering properties of functional programs by testing. In Proceedings of the 32nd Symposium on
Implementation and Application of Functional Languages, IFL ’20, page 67–78, New York, NY,
USA, 2021. Association for Computing Machinery.

[7] E. First, M. Rabe, T. Ringer, and Y. Brun. Baldur: Whole-Proof Generation and Repair with
Large Language Models. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, page
1229–1241, New York, NY, USA, Nov. 2023. Association for Computing Machinery.

[8] A. Q. Jiang, W. Li, J. M. Han, and Y. Wu. Lisa: Language models of isabelle proofs. 6th
Conference on Artificial Intelligence and Theorem Proving, 2021.

[9] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen. Hipster: Integrating theory exploration
in a proof assistant. In Proceedings of CICM, pages 108–122. Springer, 2014.

[10] M. Johansson and N. Smallbone. Exploring mathematical conjecturing with large language models.
In 17th International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2023, 2023.

[11] G. Poesia, D. Broman, N. Haber, and N. D. Goodman. Learning formal mathematics from intrinsic
motivation. arXiv preprint arXiv:2407.00695, 2024.

[12] M. N. Rabe, D. Lee, K. Bansal, and C. Szegedy. Mathematical reasoning via self-supervised
skip-tree training. In Proceedings of ICLR, 2021.

[13] N. Smallbone, M. Johansson, K. Claessen, and M. Algehed. Quick specifications for the busy
programmer. Journal of Functional Programming, 27, 2017.

[14] J. Urban and J. Jakub̊uv. First neural conjecturing datasets and experiments. In Proceedings of
CICM, 2020.

[15] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster, D. Simig, P. S. Koura, A. Sridhar, T. Wang,
and L. Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

3


	1 Introduction
	2 Ongoing Experiments
	2.1 Neural conjecturing
	2.2 Neuro-symbolic conjecturing
	2.3 Evaluation

	References

