miniCodeProps: a Minimal Benchmark for
Proving Properties of Code

Evan Lohn! and Sean Welleck!

Carnegie Mellon University, Pittsburgh, Pennsylvania, U.S.A
(elohn,wellecks)@cmu.edu

1 Introduction

Large language models (LLMs) have led to rapid progress in automated code generation. How-
ever, LLM-generated code lacks correctness guarantees, limiting its safety and reliability. In-
teractive theorem provers (ITPs) offer guarantees on the correctness of code (either generated
or human-written) by pairing code with formal specifications of desired behavior, along with
proofs that the code meets the specifications. This makes the intersection of LLMs and ITPs
potentially fruitful for dramatically improving the safety and reliability of LLM-generated code.
However, writing verified code often requires a deep understanding of a program’s semantics
and extreme effort, even for human experts. As a result, it is unclear to what extent LLMs are
capable of automatically generating verified code using an ITP, even in fairly simple cases.
Towards this end, we develop miniCodeProps, a benchmark of 177 program specifications
in the Lean proof assistant, aimed at the subproblem of automatically generating a proof for
a provided program and specification. Despite its simplicity, miniCodeProps is challenging
for current LLM-based provers. For example, our best baseline approach proved very few
specifications requiring proofs longer than a few lines. We publicly release miniCodeProps as a
benchmark for furthering automated theorem proving in the context of formally verified code.!

2 Benchmark Contents

We create miniCodeProps by translating programs from Tons of Inductive Programs (TIP) [1]
(https://github.com/tip-org/benchmarks) from Haskell into Lean 4. We manually translated
code from three files in TIP that contain a mix of function definitions, propositions describing
the results of calling those functions, and termination lemmas used in the function definitions.
In total, this yields 177 Lean 4 theorem statements.

Functions Most of the translated functions operate on linked lists, while the rest involve nat-
ural numbers and binary trees. With a few notable exceptions, the functions perform concep-
tually simple operations such as filtering, returning the last element, and counting the elements
of a list. The more complicated functions are increasingly esoteric sorting functions. In total,
miniCodeProps is derived from 76 TIP functions.

Propositions The propositions express intuitively correct properties of the function(s) being
described. One example property is the formalized version of the following: “if a list [is non-
empty, the concatenation of all but the last element with the last element yields the original
list.” The formalized version is as follows:

def prop_48 (xs: List Nat) := not (null xs) -> butlast xs ++ [last xs] = xs

1Our benchmark and associated baseline code can be found here

https://github.com/tip-org/benchmarks
https://huggingface.co/datasets/elohn/miniCodeProps

CodeProps Lohn and Welleck

| Medley (Easy) | Termination (Med.) | Sorting (Hard)

LLMStep + Pythia2.8B 14736 1728 0/63

LLMStep + Llemma7B 46/86 2/28 0/63

LLMStep + ntp-mathlib-context-deepseek-coderl.3B 38/86 0/28 0/63
GPT-4-turbo 44/86 1/28 9/63

Table 1: Number of specifications proven when applying next-step tactic generation with LLM-
Step and full proof generation with GPT4 to the problem of verifying program specifications.the
Medley section contains mostly of specifications that can be proven in several lines. Proofs of
the sorting algorithm properties and termination lemmas are expected to require at least tens
of lines and hours of programmer effort.

Termination Lemmas In Lean 4, recursive functions must be paired with a proof of ter-
mination. While Lean infers the proof without user input in simple cases, more complicated
recursive calls require the user to explicitly prove termination. As the vast majority of our
function definitions are recursive, our benchmark includes 28 lemmas that support 4 termina-
tion proofs of nonstandard sorting algorithms from TIP. These lemmas themselves represent
practically useful and highly nontrivial properties of code.

Availability and Usage We have published our benchmark as a public dataset on Hugging-
face, including a link to our example benchmarking code. The Huggingface dataset is in the
jsonlines format. Each entry contains the relevant programs, the specification, the initial proof
state of the specification, a subjective difficulty score, and the location of the specification in
the source file. The source files are also included. This format is intended to make it easy to
experiment with various input strategies, such as providing a model with a proof state, a full
file, or a filtered set of code blocks as context.

Related work. Many benchmarks for automated theorem proving in Lean are focused on
theorems from mathematical domains. For example, miniF2F [4] contains 488 self-contained,
easy-to-state theorems from math competitions. Its simplicity and impact as a benchmark
motivated the creation of miniCodeProps. Other benchmarks provide code properties from
large, complex repositories such as the CompCert compiler verification project in Coq [2, 3],
which arguably tests different aspects of automated code verification than those tested by
miniCodeProps. Finally, Tons of Inductive Problems [1] targets SMT-based verification, while
miniCodeProps targets interactive theorem proving.

3 Baselines

Recent work on neural theorem proving uses two main approaches: Full proof generation via
few-shot prompting a language model and next-step tactic generation. Few-shot prompts typ-
ically contain initial proof state and file context paired with complete proofs. After the model
generates one or more potential proofs, they are verified by the proof checker (in our case, the
Lean 4 kernel). Next-step tactic prediction models commonly take only the proof state as input
and return suggestions for the next tactic to use in the proof. Each suggestion is then given
as input to the Lean 4 kernel, and the resulting proof state is used to prompt the model for
the next tactic. We use the common “best-first” heuristic to choose proof states to prompt
the language model. Our baseline results are displayed in Table 1. In our talk, we will discuss
our results qualitatively and quantitatively. Our Huggingface repo contains full details of our
experiment setup.

CodeProps Lohn and Welleck

References

[1] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone. Tip: Tons of inductive problems. volume
9150, 07 2015.

[2] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363-446,
2009.

[3] A. Thakur, G. Tsoukalas, Y. Wen, J. Xin, and S. Chaudhuri. An in-context learning agent for
formal theorem-proving, 2024.

[4] K. Zheng, J. M. Han, and S. Polu. minif2f: a cross-system benchmark for formal olympiad-level
mathematics. In International Conference on Learning Representations, 2022.

	1 Introduction
	2 Benchmark Contents
	3 Baselines
	References

