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Abstract

We have automatically discovered explanations for about one-third of the sequences
in the Online Encyclopedia of Integer Sequences (OEIS). We briefly describe the basic
setting consisting of a feedback loop that starts from zero knowledge and iterates between
guessing the explanations, their verification, and training of the guessing methods. Then
we describe several additions and experiments that led to the current set of solutions found
in 600 iterations of the loop. We also analyze some of the solutions discovered.

Introduction The search for abstract patterns is one of the principal occupations of math-
ematicians. The discovery of similar patterns across different mathematical fields often leads
to surprising connections. When a symbolic representation (e.g. formula) describing a pattern
is found, a mathematician can start reasoning and deriving additional facts about the theory
in which the pattern occurs. Integer sequences are a very common kind of mathematical pat-
terns. A compilation of such sequences is available in the On-Line Encyclopedia of Integer
Sequences OEIS [4] curated by Neil Sloane. In this abstract, we present improvements made
to the self-learning system, leading it to discover from scratch programs and explanations for
122,888 sequences in 600 iterations. This improves over our previously published result of 78,000
sequences [1]. We describe the changes to our system that were implemented and their effect
on the self-learning loop.

Programming Language The programs are synthesized using a programming language
containing a few primitives. This facilitates the learning and encourages the system to come
up with its own solutions for more complex programs (e.g. prime numbers). It contains the
constants 0, 1, 2, the functions +, −, ×, div , mod , two arbitrary-precision integers variables
x, y, the conditional operator cond and three looping operators loop, loop2 , compr . To generate
a sequence of integers, we take a program p that represents a function f : Z → Z and compute
f(0), f(1), f(2), etc. If these outputs match all the terms provided for an OEIS sequence on its
OEIS web interface, we say that the OEIS sequence has a solution. We have recently added two
extra operators push and pop to allow our programs to reason about list integers if necessary.
This addition allowed the discovery of programs for sequences that are naturally implemented
using lists as well as the simplification of existing ones. Such examples will be given during the
presentation. To speed up the execution of programs, we have also implemented memoization
for our loops. This can only be done when the initial values of the loop do not contain variables.
This speeds up the evaluation by a factor of 10 and also allows our system to find solutions
that would have been discarded because of the time limit.

Our Approach To find programs generating integer sequences, our approach relies on a
self-learning loop that alternates between three phases. During the search phase, a neural
network synthesizes programs for targeted sequences. Then, during the checking phase, the
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proposed programs are checked to see if they generate their target sequence, or any other OEIS
sequences. In the learning phase, a neural network trains on these examples to translate the
“solved” OEIS sequences into the best (e.g. smallest) discovered program(s) generating it. This
updates the weights of the network which influences the next search phase. Each iteration of
the self-learning loop leads to the discovery of more solutions, as well as to the optimization of
the existing solutions. This approach differs from inductive logic programming systems (such
as Popper [3]) as we use statistical learning across many instances to arrive to a solution instead
of trying to find logical patterns from a single instance (sequence).

Results About three months and 190 iterations were necessary to reach the 78,000 sequences
from scratch, and after a bit more than a year and 600 iterations in total, we obtained solutions
for almost 123,000 sequences. During this later year, we experimented with different approaches,
described in the following paragraphs, to improve the quality of the programs synthesized by
the NMT neural network [2].

New Training Regimes Instead of training on the full dataset at every generation, it can
be interesting to only train on a specific part of the data set. These parts of the dataset are
created using a simple clustering algorithm based on weighted syntactic features. This creates
specialized neural networks that are better at detecting patterns in a particular mathematical
domain. We also experimented with increasing the embedding size from 500 to 1000 and with
a transformer architecture but the results so far have been inconclusive.

A New Task: Translating Programs to Programs The original task is to translate a
sequence of integers into a program generating that sequence. In order to propagate innovations
faster across all programs we have experimented with translating programs to programs that are
close according to a syntactic distance. In practice, to create a training example for this task,
we pick for each program P1 a program P2 at random among the 10 closest neighbors of P1.
Since P1 and P2 are syntactically close, the neural network trained on such examples can learn
to emulate various tasks implemented manually e.g. in ILP, evolutionary, and abstraction-
refinement systems, such as generalization (changing a term into a variable), specialization,
replacement of subroutines by shorter or more efficient code, etc. In general, such methods
may be useful to emulate various reasoning and inductive/abductive steps that human thinkers
might do when playing with the sequences and programs. Running this new translation task, on
the set of all programs discovered so far, produces a significant number of solutions (sometimes
more than the original approach) at each generation on top of our original approach.

A New Objective: Programs that are Both Small and Fast In our original setup,
we are collecting in the evaluation phase only the fastest and the smallest program discovered
so far for a particular sequence. Smaller programs typically generalize better [1] and thus are
preferred but can be too slow to evaluate. In a recent change, we collected a third solution
for each sequence which is a compromise between a small and a fast program. It minimizes
the measure time0.5 × size. The coefficient 0.5 was experimentally determined to be the best
at producing solutions that are different from the fastest and smallest solutions to maximize
the diversity of our training data. After adding these extra solutions, we did not observe any
significant effect (positive or negative) on the speed of discovery of new solutions.

Resources The code for our project is available in this repository https://github.com/
barakeel/oeis-synthesis.
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