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1 Introduction: Mizar, ATPs, Hammers
In this work, we prove over 3000 previously ATP-unproved Mizar/MPTP problems by using
several ATP and AI methods. First, we start to experiment with the cvc5 SMT solver which
uses several instantiation-based heuristics that differ from the superposition-based systems, that
were previously applied to Mizar, and add many new solutions. Then we use automated strategy
invention system Grackle to develop cvc5 strategies that largely improve cvc5’s performance on
the hard problems. In particular, the best invented strategy solves over 14% more problems
than the best previously available cvc5 strategy. We also show that different clausification
methods have a high impact on such instantiation-based methods, again producing many new
solutions. In total, the methods raise the number of ATP-solved Mizar problems from 75%
to above 80%. This is a new milestone over the Mizar large-theory benchmark and a large
strengthening of the hammer methods for Mizar.

The Mizar Mathematical Library (MML) [1] is one of the earliest large libraries of formal
mathematics, containing a wide selection of lemmas and theorems from various areas of math-
ematics. The MML and the Mizar system [26, 2, 15] has been used as a source of automated
theorem proving (ATP) [31] problems for over 25 years, starting with the export of several
Mizar articles done by the ILF system [10, 9]. Since 2003, the MPTP system [36, 37] has been
used to export the MML in the DFG [16] and later TPTP [35] formats. In the earliest (2003)
ATP experiments over the whole library, state-of-the-art ATPs could prove about 40% of these
problems when their premises were limited to those used in the human-written Mizar proofs
(the so called bushy1, i.e., easier, mode).

Since 2013, a fixed version of the MML (1147) and MPTP consisting of 57880 problems has
been used as a large benchmark for ATPs and related hammer [6] (large-theory) methods over
Mizar [29, 21, 34, 30, 17, 8]. When using many ATP and premise-selection methods, 56.2% of
the problems could be proved in [22]. This was recently raised to 75.5% [19], mainly by using
the learning-guided E [32] (ENIGMA [20, 13]) and Vampire [25] (Deepire [33]) systems.

Both E and Vampire are mainly saturation-style superposition systems. In the recent years,
instantiation-based systems and SMTs such as cvc5 [3], iProver [24] and Z3 [11] are however
becoming competitive even for problems that do not contain explicit theories in the SMT
sense [5, 12, 14]. The problems that they solve are often complementary to those solved by the
superposition-based systems.
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2 Summary of the Involved Methods

We employ instantiation-based methods in cvc5 to solve automatically as many hard Mizar
problems as possible. Our main result is that the set of ATP-provable MPTP problems has
been increased by over 3,000, from 75.5% to 80.7%. All these problems are proved by the cvc5
system which we improve in several ways. First, we use the Grackle system [18] to automati-
cally invent stronger strategies for MPTP. Our best strategy outperforms the previously best
cvc5 strategy by 14% and our best 7-strategy portfolio solves 8.8% more problems than the
corresponding CASC portfolio. We also combine strategy development with alternative clausi-
fication methods. This turns out to have a surprisingly high impact on the instantiation-based
system, contributing many new solutions. Finally, we obtain further solutions by modifying the
problems with premise selection. Ultimately, these methods together double the number of the
previously ATP-unproved Mizar problems solved by cvc5 from 1,534 to 3,021. We show that
the methods extend to previously unseen Mizar problems.

Grackle Strategy Invention. Grackle [18] is a system for the automated invention of a
portfolio of solver strategies targeted to selected benchmark problems. A user provides a set of
benchmark problems and Grackle can automatically discover a set of diverse solver strategies
that maximize the number of solved benchmark problems. Grackle supports invention of good-
performing strategies for several solvers, including ATP solvers E [32], Vampire [25], Lash [7],
and an SMT solver Bitwuzla [27]. Support for additional solvers can be easily added by pro-
viding a parametrization of the solver strategy space, and by implementing a simple wrapper
to launch the solver. In this paper, we extend Grackle to support an SMT solver cvc5 [3], and
we evaluate its capabilities on a first-order translation of Mizar problems.

Different Clausification Methods. The Mizar problems are given as TPTP [35] problems
in first-order logic (FOF). For cvc5 we translate them to the SMT2 language [4] in the the-
ory of uninterpreted functions (UF). By default, cvc5 converts to clausal normal form (CNF)
internally but since instantiation-based heuristics seem sensitive to problem reformulation, we
also experiment with external clausification. This gives us syntactically different variants of the
problems and we can test whether cvc5 benefits from such alternative ways of clausification. We
use E as the external clausifier and we construct two more problem variants. The first variant
is produced by using E’s default clausification parameters. The second variant uses much more
aggressive introduction of definitions for frequent subformulas, introducing a new definition if
a subformula appears at least four times.

Effects of Premise Selection. Based on the success with problem reformulation, we perform
additional experiments, this time with different premise selection methods developed in our
prior work [19]. Namely, we evaluate Grackle and baseline strategies on the bushy variants of
the problems, on the strongest GNN (graph neural network [28]) premise selection slices, and
on LightGBM [23] premise selection slices. These variants were found complementary in our
previous experiments [19].

Conclusions. In the end, we have solved 3,021 (21.3%) of the remaining 14,163 hard Mizar
problems, raising the percentage of automatically proved Mizar problems from 75.5% to 80.7%.
This was mainly done by automatically inventing suitable instantiation-based strategies for
the cvc5 solver, using our Grackle system. Further improvements were obtained by using
alternative clausifications of the problems, and also alternative premise selections. Such problem
transformations have a surprisingly large effect on the instantiation-based procedures and are
likely to be explored further when creating strong portfolios for such systems.
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