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Introduction Proving theorems from scratch is extremely tedious and verbose, so formal
proof developments typically build on that which has been previously proven. However, the
pool of available formal knowledge is both wide and deep, so even locating relevant premises
is challenging. In interactive theorem provers (ITPs) with strong dependent type systems like
Coq and Lean the type of a theorem alone is highly descriptive of the content of a theorem,
motivating search over types[18, 28]. Unfortunately, it may be the case that the individual
using the ITP only has an informal notion of the theorem they wish to locate and doesn’t know
a fragment of the desired type to provide to a search engine. To support those individuals
searching for natural language notions we present ProofDB, which can take a plain-English
query and retrieve relevant results from a database of formal proofs. The contributions of this
work are a LLM fine-tuned for theorem embedding over a novel dataset, a front-end website for
searching databases of theorems, and a Coq plugin that can provide natural language search
over custom theorems in a user’s local proving environment. A list of links to artifacts are
given in Appendix A. In the talk we will demonstrate the user interfaces of ProofDB and
discuss challenges and lessons learned throughout the end-to-end process of data collection,
training, and deployment of our model.

Related work There is a large body of work in type-oriented search, such as Loogle[18] for
theorems in Lean, Hoogle[21] for functions in Haskell, type-aware auto-complete for Coq[9], and
built-in searches present in many interactive theorem provers[28]. Several of these tools focus
on searching for fragments of types or type patterns using hand-tuned heuristics as opposed
to natural language search. On the other hand, Moogle[12], released by Morph Labs, provides
natural language search over Lean. Moogle was deemed useful in high profile formalization
work by Terence Tao[27], but other than this, we are unaware of any publications or substantial
evaluations of Moogle.

Generally, our model is an embedding model which embeds input text into semantically
rich vectors. These embeddings can be used for clustering related texts, retrieving relevant
information from a database (this work), or even individually as features for text classification.
Specifically, our model is trained on synthetic data generated by a causal language model,
emphasizing generation of challenging datasets to improve model performance. These strategies
are common to other works such as SFR-Embedding-Mistral[20], which is currently ranked first
on the MTEB[7] for text retrieval, as well as its predecessor E5-Mistral[15].

Data & Model Current trends in machine learning[2, 4] push the state of the art with
training sets and models exponentially larger[6, 10] than those conventionally used in previous
decades. Training contemporary competitive models from scratch is prohibitively expensive,1

but researchers with relatively modest resources can leverage advances in resource-efficient
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1Training the Llama-2 7B param model took 184,320 hours of GPU time on Nvidia A100s[13] which would

cost over $200,000 if bought at Lambda Lab’s current cloud prices.
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training techniques[11] to fine-tune large models pre-trained on a wide domain of tasks to excel
in a narrow domain. These trends led us to fine-tune the Llemma[8] language model, which was
trained on a dataset of mathematics and formal methods texts, including Coq code, making it
an appropriate base for learning insightful representations of Coq theorems.

Although Llemma is a causal language model, we trained it to become an embedding model
that converts the text of theorems to semantically rich vectors by fine-tuning less than two
percent of the base model’s parameters with QLORA[11]. In order to fine-tune the model, we
needed a dataset that captures notions of relevancy between theorems and natural language
searches. As far as we are aware, no such public dataset existed prior to this work. For our
first dataset, we synthesized positive examples by prompting an open-weight LLM[14] to write
example searches given a brief natural language description of the target theorem summarized
from documentation (data example in Appendix C). Negative examples were generated by
randomly associating a theorem and search query from the pool of all theorems and search
queries, which are unrelated on average. We fine-tuned Llemma on this dataset to move positive
pairs of text closer in the embedding space and negative pairs of text further away, which gave
us our first iteration ’proofdb’.

Literature on training embedding models strongly emphasizes the importance of difficult
training examples when training strong embedding models [20, 15, 1], but in the dataset previ-
ously described our negative training examples were easy to distinguish from positive examples
because randomly selected topics are, on average, clearly unrelated. In order to improve the
dataset’s difficulty, we used generation probabilities as a proxy for relevance: synthetic queries
that are generated with higher probability are deemed more relevant than those with lesser
probability. This let us sample for a dataset of (positive theorem, negative theorem,
anchor search) triples where the ’anchor’ is a generated search result that is relevant for
the positive theorem and less relevant (but not excessively irrelevant) for the negative theorem.
Limiting the irrelevancy of the negative theorem should make it harder to rank the positive
theorem over the negative theorem for the given anchor. This ’phase-2’ dataset is explorable
through a link in Appendix A. We continued training our ’proofdb’ model on this more difficult
dataset with a triplet loss[1] appropriate for learning this relationship. The resultant model,
’proofdb-HN’, scored competitively on our benchmarks (Appendix D).

Web Search and Client To provide the capabilities of our model to the end-user, we wrote
a website that serves inference of our model over the theorems contained within a collection
of popular Coq packages[19]. For users that need search on more specific theorems and do
not have the time or resources needed to set up their own proofdb website instance, we have
written a local client which searches over the theorems present in the user’s active Coq session.
In order to support low-resource clients, we serve them embeddings from an API co-hosted
with the web search. This presents additional challenges including embedding theorems on the
fly, transmitting large amounts of theorems/embeddings, and efficiently searching a small local
vector cache on the client. We partially mitigate these challenges by caching embeddings on
both the server and client side and employing embedding compression techniques[3] to reduce
the size of the embeddings while maintaining probablistic bounds on the degradation introduced
by compression. Both our web search and local client provide deterministic search filters that
complement the capabilities of our fuzzy natural language search. Sources (A) for these clients
and example searches (B) are available in the appendix.

One limitation of our search implementations is that we do not currently search every single
theorems present in a switch or local environment, which we partially attribute to outlier
theorems of extremely long length and other edge cases.
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Appendix

A Appendix: Full List of Artifact Links

1. Live Web UI Demo (https://proofdb.tompreichel.com), availability not guaranteed!

2. Models & Datasets

(a) Phase 1 training data (https://huggingface.co/datasets/tomreichel/proofdb-training-
phase-1)

(b) Phase 2 training data (https://huggingface.co/datasets/tomreichel/proofdb-training-
phase-2)

(c) Human-written test set (https://huggingface.co/datasets/tomreichel/proofdb human eval)

(d) GPT-written test set (https://huggingface.co/datasets/tomreichel/proofdb-synthetic-
eval)

(e) ProofDB model (https://huggingface.co/tomreichel/proofdb)

(f) ProofDB-HN model (https://huggingface.co/tomreichel/proofdb-HN)

3. Software Source

(a) Web UI Source (https://github.com/tom-p-reichel/proofdb-webui/)

(b) Client Source (https://github.com/tom-p-reichel/proofdb-webui-client)
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B Appendix: Selected Web UI Search Examples
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C Appendix: Synthetic Data Example

As an example, we will look at how our data pipeline generated positive synthetic search exam-
ples for the theorem Exists vlookup from the stdpp[26] library, which is defined in the following
way:

Lemma Exists_vlookup {A} (P : A -> Prop) {n} (v : vec A n) :

Exists P (vec_to_list v) <-> exists i, P (v !!! i).

Firstly, we prompt a LLM (Code Llama 33B[14]) to give us a natural language description
of the theorem given the source of the theorem and the surrounding source (including developer
comments) as context. For this theorem, the following description was generated:

The theorem ‘Exists_vlookup‘ states that there exists an element ‘x‘ in the vector ‘v‘

such that the proposition ‘P‘ is true for ‘x‘. In other words, it checks if there is

at least one element in the vector that satisfies the given property. The theorem is

written in a way that makes it easy to use with the ‘Exists‘ quantifier, which is often

used in formal proofs to state that there exists at least one object with a certain property.

Then we prompt for concise searches a user might use in order to find this theorem, given the
theorem’s type and description as context. In order to get consistently well formatted output
from the model, we found it was necessary to give a well-formatted example. The following
searches were proposed by the model:

* "vector exists"

* "vector contains"

* "vector has element"

* "vector property"

* "vector quantifier"

* "vector exists property"

* "vector property exists"

* "vector contains property"

* "vector has property"

* "vector quantifier property"

* "vector property quantifier"

* "vector element property"

* "vector property element"

* "vector quantifier element"

* "vector element quantifier"

* "vector element property quantifier"

Finally, we perform certain preprocessing steps on the generated theorems to eliminate
common failure modes of the model, such as quoting the theorem name verbatim.

D Appendix: Model Evaluation

To evaluate our model, we run searches on a set of held-out test theorems and count how often
the model can retrieve the intended label theorem within the top 10 theorems. We evaluate
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other embedding models in the same way to compare against our models. For our evaluations
we provide 95% confidence interval error-bars on the proportion of intended theorems retrieved
in the top 10 results as calculated by SciPy’s[5] ‘binomtest‘. Here are the list of models we
evaluate in this way:

1. Our models.

(a) proofdb, trained to move synthetic positive (theorem,search) pairs closer together
and sampled negative pairs further away.

(b) proofdb-HN, trained on triplets of (theoremA,theoremB,search) to move the search
closer to theoremA than it is to theoremB. Uses ’proofdb’ as a pretrained base.

2. Models featured on the SentenceTransformers pretrained models page[25], described as
general purpose embedding models and trained on at least 1 billion training pairs.

(a) all-mpnet-base-v2[17], best overall performer on Sentence-Transformer’s (selected)
pretrained model list.

(b) all-distilroberta-v1[16]

3. Models featured on the SentenceTransformers pretrained models page[25], trained for
retrieval tasks specifically.

(a) multi-qa-mpnet-base-dot-v1[24], best performer on the SentenceTransformer pre-
trained models page when evaluated on semantic search, second best overall.

(b) multi-qa-distilbert-cos-v1[22]

(c) multi-qa-MiniLM-L6-v2[23]

4. OpenAI’s text embedding models (proprietary).

(a) text-embedding-small

(b) text-embedding-large

5. Models from the MTEB[7] leaderboard.

(a) SFR-Embedding-Mistral[20], currently the best general purpose text retrieval model
on the MTEB.

Our models perform promisingly well on our small scale human written search dataset (linked
in Appendix A), even against much larger embedding models such as OpenAI’s text embed-
ding models (text-embedding-3-*), and SFR-Embedding-Mistral, which is currently ranked first
on the Massive Text Embedding Benchmark[7] for text retrieval. However, these test results
have limited generalizability because they were written by one author on a small number of
arbitrarily chosen theorems. The same author also provided the few-shot example used in the
context of the positive example synthesis pipeline, so the generation of the training set may be
disproportionately prone to the biases of the author.
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For a larger scale test, we let GPT3.5 write searches for the theorems in our test split. Note
that we did not give GPT3.5 an example so as to minimally contaminate the output with our
preferences. The precise prompt for GPT3.5 is given in the next appendix section (E). For the
most part our synthetic trial agrees with the small scale human trial. Notably, proofdb without
hard-negative fine-tuning (the phase 2 dataset) does not perform as well as the human written
evaluation would indicate. We are unsure if this is a quirk of synthetic trials or a quirk of the
human trials, but we plan to conduct more thorough evaluation of human search preferences
at a later date. Either way, proofdb-HN performs well on both human-written searches and
synthetic searches.
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Eval on GPT3.5-Written Searches
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It should be noted that a limitation of both of these evaluations is that the test set may have
theorems that are very similar to theorems in the training set: many Coq libraries prove results
present in other libraries in only slightly different ways, so multiple similar variants of common
theorems were likely split into both test and training sets. This can compromise the significance
of the benchmark because the model may behave poorer on theorems markedly distinct from
both the test and training set. Although, our models are relatively cheap to retrain and new
training data can be synthetically generated, so new libraries can more easily become part of the
training set than in other settings, which slightly alleviates concerns about model generalization
performance.

E Appendix: Verbatim Prompt Given to GPT3.5 to Gen-
erate Test Synthetic Searches

Newlines added for readability.

Consider the following Coq theorem definition:

‘‘‘coq

{theorem}

‘‘‘

What are some searches a user might provide to a hypothetical natural language Coq theorem

search engine that would best represent this theorem?

Your searches should be concise.

Don’t write full sentences.

There is no need to write in your search that you are looking for a ’Coq theorem’

because the search engine only searches Coq theorems.

Give your response as a JSON object with a single key ’searches’ containing a list of strings.
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