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Introduction Natty1 is a new natural-language proof assistant written in OCaml, with an
embedded automatic prover based on higher-order superposition. An input file for Natty is
written in a controlled natural language [3, 2] that looks like mathematical English with a
restricted grammar and vocabulary. It may contain axioms, definitions, and theorems, which
may optionally include proofs written in natural language. Natty translates this input to a
series of formulas of higher-order logic, each representing an entire theorem or a proof step.
Natty then attempts to prove these formulas using its embedded prover.

Natty is in an early stage of development, but it is at least able to read an natural-language
input file that defines the natural numbers and asserts a series of basic theorems about them.
Natty can prove most of these theorems in less than 1 second per theorem. Many of these proofs
require a higher-order induction step. Additionally, some theorems in this input file contain
hand-written proofs. Natty can verify almost all of the steps in these proofs quickly. Natty can
also export theorems and proof steps to files in the THF [7] format. The resulting THF files
with theorems about natural numbers may form an interesting test set for other provers too.

Natural-language input Natty reads source files written in the Natty language, a controlled
natural language for writing mathematics. The language is intended to resemble textbook
mathematics as closely as possible, within the limitations of plain text and the Unicode character
set. For example, Natty will implicitly multiply variables that appear in adjacent succession.

Logic Natty is founded on classical higher-order logic with rank-1 polymorphism, boolean and
functional extensionality, and choice. In fact, the current implementation does not approach
the full power of this logic. For example, user-defined functions may not be polymorphic, and
Natty can make few higher-order inferences at this time. Higher-order logic is still useful as a
foundation even in this early stage of development. For example, an input file can express Peano
induction without using an axiom schema. Natty represents sets as functions with codomain
B, an elegant formulation that does not require any set theory axioms. The strong type system
allows Natty to perform useful type checking on the user’s behalf, and may even make inference
more efficient.

Translation into logic Natty parses the input file, following a mostly context-free grammar
for its controlled natural language. The parser outputs a list of statements, each of which is a
type declaration, a constant declaration, an axiom, a definition, or a theorem. A theorem that
includes a natural-language proof will contain parsed proof steps, which Natty arranges into
a tree that indicates the scope of each variable and assumption in the proof. Natty infers the
proof structure heuristically; generally speaking, it makes the scope of each introduced variable
as small as possible while still enclosing all references to the variable. Natty then generates a
series of formulas representing individual proof steps.

Proof calculus Natty’s proof calculus is a pragmatic, incomplete variant of the higher-order
superposition calculus recently developed by Bentkamp et al. [1] Natty has superposition and

1https://github.com/medovina/natty
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Table 1: Theorems

Natty E Vampire Zipperposition

proved (of 18) 15 16 4 12
average time 0.36 0.03 0.01 0.55
PAR-2 score 1.96 1.13 7.78 3.70

Table 2: Proof steps

Natty E Vampire Zipperposition

proved (of 43) 42 40 39 40
average time 0.16 0.01 0.02 0.19
PAR-2 score 0.39 0.70 0.95 0.87

equality resolution rules adapted from that calculus, plus an outer clausification rule and a clause
splitting rule that are variants of the OuterClaus rule from [5]. It also has typical contracting
rules that rewrite, simplify or eliminate clauses. To compare two higher-order terms, Natty
first maps them to first-order terms using a translation suggested in [1]. It then applies the
transfinite Knuth-Bendix order [4] as suggested in that same paper.

Unification A complete higher-order prover must perform full higher-order unification, which
is challenging and expensive. Natty is a pragmatic, incomplete prover and its unification pro-
cedure is almost entirely first-order. It can also unify two lambda terms in some situations.
Despite these limitations, Natty can perform useful unifications in which a variable becomes
bound to a higher-order term. In this way Natty can often find inductive proofs.

Main loop and given clause selection Natty’s main loop is modeled after the main loop
in E [6] and searches for a contradiction by saturating the set of input formulas. Natty uses a
given clause selection mechanism with only a single priority queue. It orders all unprocessed
clauses using a cost function that reflects the changes in size that have occurred during each
clause’s derivation. The cost function is designed to penalize “uphill” steps that increase the
size of the formula to be proved, and find proofs that go “downhill” most of the time.

Clausification Natty attempts to preserve formula structure as much as possible when gen-
erating inferences via a process of dynamic clausification. Whenever Natty computes possible
superpositions between two clauses C and D, it expands them temporarily into two sequences
C1, . . . , Cm and D1, . . . , Dn by performing all possible incremental clausification steps that do
not split the clauses. It then looks for superposition inferences between all pairs Ci and Dj ,
considering each literal or subterm only in the first Ci or Dj in which it because exposed at a
position valid for superposition. In this way, each processed clause serves as a representative of
all the clauses that can be generated from it by non-splitting clausification steps.

Performance We evaluated Natty’s performance versus that of E 3.0.08, Vampire 4.8, and
Zipperposition 2.1 in proving theorems and proof steps exported from a file that asserts various
elementary theorems about the natural numbers. The time limit was 5 seconds. The results
are in Tables 1 and 2. We think Natty’s performance at this early stage is promising.
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