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Abstract

We propose an automated theorem prover (ATP) based on the HyperTree Proof Search
(HTPS) enhanced by retrieval-augmented tactic generator (ReProver).

1 Introduction

Large Language Models (LLMs) are known to have limited mathematical abilities. For example,
even in a simple task of integer addition, they tend to make mistakes when the digit number
increases. Similarly, in mathematical reasoning, they tend to hallucinate when the length and
complexity of reasoning increase. In order to reduce those hallucinations, we need a mechanism
to automatically verify and correct logical inference by LLMs. Interactive Theorem Provers
(ITPs)—such as Lean, Isabelle, Metamath, Coq, etc. have drawn attention as such an
automatic verification system for mathematical reasoning (see e.g. Lu et al., 2023; Li et al.,
2024). In this study, we propose an automated theorem prover (ATP) based on the HyperTree
Proof Search (HTPS) (Lample et al., 2022) enhanced by retrieval-augmented tactic generator
(ReProver) (Yang et al., 2023).

The problem of automated theorem proving with an I'TP can be formulated as a reinforce-
ment learning problem where the environment is the ITP, agents are computer algorithms such
as LLMs, states are theorem statements, actions are tactics, and the reword is obtained when
the agent either prove or disprove the initial statement. Based on the current statement (called
the goal or a subgoal), LLM generates a tactic, and when that tactic is input to the ITP, the
goal is rewritten to subgoal(s). If the rewriting of the statement is repeated and it reaches the
goal state, the proof is complete. The difficulty of this problem lies in the fact that both the
state space and the action space are discrete and infinitely large. Therefore, methods like brute
force cannot be feasible, and methods using random walks are pessimistic.

The HyperTree Proof Search (HTPS) (Lample et al., 2022) is a Monte Carlo Tree Search
(MCTS) algorithm tailored for theorem-proving problems inspired by AlphaZero (Silver et al.,
2018). Specifically, they prepare a policy network that generates tactics from proof states, and
a critic network that outputs proof possibilities from tactics, and then perform the three phases
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Figure 1: Schematic Diagrams of Proposed ATP System

of MCTS: Selection, Expansion, and Backpropagation. Obviously, the performance of HTPS
depends on the quality of the policy network. Unfortunately, however, the trained model is not
public. Also, the authors reported that the training took more than 1000 days on A100 GPU
time, making it difficult to reproduce.

The Retrieval-Augmented Prover (ReProver), on the other hand, is a premise selector and
a tactic generator based on Retrieval-Augmented Generation (RAG) developed as a part of
LeanDojo (Yang et al., 2023). Specifically, it searches mathlib (mathlib community, 2020)
for premises that are similar to the target statement. By connecting to an encoder-decoder
model in the latter part of (strict) ReProver, it can also generate tactics. The authors reported
that the training took just five days. Also, the trained model has been made available online.
However, it only suggests next (top-k) tactics, and does not support efficient search algorithm
such as MCTS. In our proposed network, we adopt ReProver as the HTPS policy network (or
tactic generator).

2 Experimental Results

We used the Mathlib dataset (mathlib community, 2020) for training, and the MiniF2F dataset
(Zheng et al., 2022) for validation. Since MiniF2F was prepared (not in Lean 4 but) in Lean
3, we employed Mathlib3, or the Lean 3 version of Mathlib. The training was carried out on
nVidia A100-SXM4-80GB for 24 hours. The timeout for each run was set to 150 seconds, and
the number of premise selection was set to 20. The input to the network is the statement of the
current goal (i.e., the proposition) written in Lean 3, and the outputs of the generator (policy
network) and estimator (critic network) are a set of candidate tactics and the probability values
of the provability given each tactic, respectively.

On the MiniF2F-test dataset, our system marked 26.2% for pass@1. As an ablation study,
we have conducted an experiment with ReProver without HTPS on the same dataset (miniF2F-
test), which marked 25.2% for pass@1, suggesting the improvement by HTPS.
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