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Abstract

This study introduces a method to improve Large Language Models’ (LLMs) mathematical reasoning
capabilities by integrating formal proofs from Interactive Theorem Provers (ITPs) into their training. We
fine-tune GPT-3.5, Mistral-7B, and Gemma-7B models with datasets pairing formal and informal proofs.
The effectiveness of this approach is assessed using the Hendrycks MATH dataset and Massive Multitask
Language Understanding (MMLU) benchmark. Results show improvements in LLMs’ performance on
various mathematical categories, suggesting the potential of formal proofs to advance LLMs’ reasoning
abilities. Further exploration of diverse formal proofs and advanced fine-tuning techniques is necessary
to bolster LLMs’ formal mathematics comprehension.

1 Introduction
Enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) is crucial for ad-
vancing artificial intelligence and automated theorem proving. Current LLMs demonstrate an impressive
understanding of language tasks but lack proficiency in deciphering and formulating rigorous formal math-
ematics [1, 2]. This research proposes leveraging verified proof libraries from Interactive Theorem Provers
(ITPs) to catalyze enhancements in LLMs’ ability to understand and generate formal mathematical proofs.

2 Related Work
Several studies explore using deep learning and neural networks for theorem proving [1, 5, 11, 15], formalizing
and mechanizing mathematical proofs [6, 8, 9, 14], and advanced machine learning techniques for theorem
proving [3, 4, 10, 12, 16]. Our research differentiates itself by directly leveraging verified proofs from ITPs
to enhance LLMs’ reasoning and autoformalization abilities.

3 Methodology
Our approach involves fine-tuning GPT-3.5, Mistral-7B, and Gemma-7B models with datasets of formal-
informal proof pairs. We constructed two datasets, ClaudeJson and MistralJson, using the LeanDojo proof
library and LLMs for informal proof generation. The models were fine-tuned on these datasets and evaluated
on the Hendrycks MATH dataset and MMLU benchmark.
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Model MMLU Category Standard 1 Fine-tuned 2

Gemma-7b Humanities/Social Sciences 46.5% 48.2%
STEM 35.9% 38.4%

Mistrab-7b Humanities/Social Sciences 41.5% 38.6%
STEM 25.6% 28.4%

GPT-3.5 Humanities/Social Sciences 43.2% 36.7%
STEM 34.8% 37.6%

Table 1: Comparison of performance in MMLU categories across different models, AutoInformalization
improves the reasoning capabilities of LLMs generally from high quality formal source code, with minimal
degradation in non-mathematicla reasoning.

Hendrycks Category Gemma-7b Mistral-7b GPT-3.5
Std 1 FT 2 Std 1 FT 2 Std 1 FT 2

Count 42.9% 42.8% 19.1% 23.8% 38.5% 34.6%
Algebra 40.0% 33.3% 16.7% 33.3% 33.3% 58.3%

Geometry 69.2% 76.9% 18.2% 9.1% 78.6% 42.9%
Intermediate Algebra 7.6% 38.5% 9.5% 14.3% 6.7% 33.3%

Number Theory 38.5% 53.9% 13.6% 22.7% 26.3% 40.0%
Pre-algebra 46.6% 73.3% 23.8% 28.6% 66.7% 83.3%

Table 2: Comparison of Hendryck’s category performance across different models, AutoInformalization im-
proves the reasoning capabilities of LLMs generally from high quality formal source code.

4 Results

5 Discussion
The results provide evidence that models trained with formal/informal proof pairs can improve performance
on mathematical tasks. Improvements are seen in higher-level categories such as geometry, algebra, and
number theory. However, there is mixed evidence for improved performance on non-STEM subjects.

Further research should explore integrating a wider variety of formal proofs, employing more advanced
models, and refining evaluation metrics. Additionally, investigating multi-stage fine-tuning processes could
yield further improvements.

Mathematics is founded on logical principles and rigorous reasoning. Advanced mathematical concepts
require the ability to understand and work with complex symbolic representations, formulate precise def-
initions, and construct logically valid proofs. By training LLMs on these types of mathematical domains,
they are forced to develop strong skills in formal logic, deductive reasoning, and manipulating abstract sym-
bolic structures. Our research highlights the potential for formal mathematical proofs to enrich the training
datasets of LLMs, potentially leading to broader applications in fields that require the interpretation and
understanding of complex mathematical concepts.

6 Conclusion
Our research highlights the potential for formal mathematical proofs to enrich the training of LLMs, leading
to enhanced mathematical reasoning capabilities. The observed gains warrant further investigation into
the integration of diverse formal proofs and the use of advanced fine-tuning techniques to bolster LLMs’
comprehension of formal mathematics.
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