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Abstract

We present CoqPilot, a VS Code extension designed to help automate the writing of
Coq proofs. The plugin collects the parts of proofs marked with the admit tactic in a
Coq file, i.e., proof holes, and combines LLMs along with non-machine-learning methods
to generate proof candidates for the holes. Then, CoqPilot checks if each proof candidate
solves the given subgoal and, if successful, replaces the hole with it.

The focus of CoqPilot is twofold. Firstly, we want to provide a zero-setup experience
for end-users. Secondly, we want to provide a platform for LLM-based experiments with
generation of Coq proofs.

Code available at https://github.com/JetBrains-Research/coqpilot

Large Language Models (LLMs) have recently demonstrated their remarkable ability to
generate code in a variety of programming languages. A natural second frontier is to use LLMs
for generating code for proof assistants. There have already been works dedicated to using
LLMs for theorem proof generating [5, 7, 13, 16, 14, 4]. Noticeable research by OpenAI [13] has
shown how transformers could be used to successfully generate formal languages. Most of the
recent works focused on one step at a time generation, followed by a proof search [7]. However,
attempts to generate the complete proof using LLMs are also present [5]. Extensive research
was conducted on how to improve the model itself and achieve better generation metrics.

In this particular work, we focus on maxing out the generation capabilities, regardless of
the particular model. Main contributions include (i) studying possible external enhancements
to the process of generating Coq code with non-fine-tuned models and (ii) creating an applied
tool for convenient generation of Coq code using LLMs, as well as facilitating easy conduction
of experiments and research based on it.

In contrast to other works and tools, we aim to create a zero-setup experience for the user.
CoqPilot is our VS Code plugin [8], which needs just a particular API key, assigned in the
settings to start running. Projects like ASTactic [16], TacTok [4], and ProverBot9001 [14] learn
predictive models, yet lack an interaction interface for the end users. Proofster [2] provides
a web interface for Coq code generation, yet this interface is not integrated into the code-
writing process. CoqPilot integrates directly into the currently popular IDE choice for Coq –
VSCode. Compared with Tactician [1], we provide a built-in opportunity to experiment with
many general-purpose LLMs. Users can easily configure many model parameters through plugin
settings and combine different approaches to boost performance. Moreover, approaches like
Tactician and CoqHammer [17], called via a special tactic, are easily integrated into CoqPilot.

A common setting in which CoqPilot works is as follows: an open Coq file with a number of
successfully proven theorems, and several goals, containing admit. In such a setting, CoqPilot
uses already proven theorems as a few-shot prompt for the LLM and tries to retrieve completion
for all the admitted goals independently.

Any admitted goal in Coq could be represented as a standalone theorem, using the hy-
potheses and the conclusion at the point of admit. We formulate the problem for the LLM as
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follows: given the theorem’s statement, generate the proof for it. LLMs tend to perform better
on few-shot prompting1 examples [9], compared to zero-shot. Theorems from the active file
are collected, and a few are used as prompts for the chosen LLMs. The selection of theorems
is based on certain metrics, such as their distance from the target theorem that needs to be
solved. We often cannot use the complete list of theorems, as the LLM’s context is limited.

The main strength of such formal methods like Coq is the ability to automatically perform
type-checking. In tandem with the generative capabilities of LLMs, it allows us to check the
correctness of the generated code. To allow automatic proof checking, we implemented a higher
level module, wrapping Coq Language Server2 and providing useful abstractions over it such as
the one to check if proof is valid in a given environment. We used the particular Coq language
server implementation [3] and from now onwards will refer to it as Coq-LSP. For each target
theorem, we generate n potential proofs, check all of them, and in case of success, return it as
an answer. In case of failure, we launch a process aiming to fix the failing proof. This process
is similar to the one used in Copra [15]. Given the depth d and the number of completions
requested each time m, for each incorrect proof, we start a multi-round communication process
with an LLM. We send the compilation error along with the special prompt to the LLM and
ask them to fix it. If the proof is still not accepted by Coq afterward, we repeat the process,
but at a maximum of d− 1 times.

We also aimed to create a benchmarking environment to evaluate how well different LLMs
and other techniques can generate Coq code. Due to specifics of Coq, Coq-LSP is not Coq
version agnostic. Hence, neither are we. Moreover, Coq-LSP supports Coq versions starting
from 8.15/8.17. As a consequence, we could not use CoqGym [16] as a dataset provider, as it
contains projects requiring old Coq versions. Currently maintained Coq version by us is 8.19
as the latest one available.

We have conducted an experiment with a set of theorems from the IMM project [12]. IMM,
which supports the desired Coq 8.19, is of particular interest to our lab. LLMs we have picked
for evaluation include GPT models [10, 11], LLaMA [6], and Anthropic Claude 2.1. Moreover,
we tried firstorder reasoning tactic firstorder auto with * as a baseline. From each model,
we attempted to sample a correct proof for the theorem up to 20 times. In this experiment,
we did not try to do proof fixing. To pick the dataset, we took all proven theorems from the
IMM project. Then we have chosen only theorems shorter than 20 tactics (83% of the original
amount). We divided theorems by their human-written proof lengths into three groups: three
to four, five to eight, and nine to twenty lines long. Then, we randomly chose 45 theorems from
the dataset with group sizes proportional to the initial distribution.

Reference proof length ⩽ 4 5 – 8 9 – 20 Total
Group size 20 14 11 45
OpenAI GPT-3.5 35% 7% 18% 22%
OpenAI GPT-4 55% 7% 9% 28%
LLaMA-2 13B Chat 5% 0% 0% 2%
Anthropic Claude 2.1 25% 7% 0% 13%
Firstorder 25% 7% 0% 13%
All methods 60% 21% 18% 38%

Table 1: Benchmarking results

1During few-shot prompting, several concrete examples of how the task is to be solved are provided. Zero-
shot prompting implies the system prompt is used without examples.

2Language Server Protocol: https://microsoft.github.io/language-server-protocol/
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A notable result is that among each group, the collectible effort of all models is stronger than
any individual one. It shows that the approach of CoqPilot to using a sequence of different
models altogether is promising. The benchmarking tool and the report on experiments are
published in the repository.3
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[3] Emilio Jesús Gallego Arias et al. Visual studio code extension and language server protocol for
coq, 2022.

[4] Emily First, Yuriy Brun, and Arjun Guha. TacTok: semantics-aware proof synthesis, 11 2020.

[5] Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models, 2023. https://arxiv.org/abs/2303.04910.

[6] Meta GenAI. LLaMA 2: Open foundation and fine-tuned chat models, 2023. https://arxiv.

org/abs/2307.09288.

[7] Albert Q. Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź, Piotr
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