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Introduction. Our work focuses on proofs as structured objects and we explore different ways
in which proofs can be structured. Proof structuring plays a crucial role both in human and
automated mathematics. Human proofs are highly structured via the extensive use of lemmas,
typically resulting in short proofs because a lemma hides its subproof, which would possibly
have even multiple occurrences in the expanded overall proof. The basic principle underlying
many “non-resolution” ATP techniques [11, 1, 2, 7, 16, 15] is enumerating proof structures in
combination with formula unification. Structure-based techniques have great influence on their
capabilities for proof search. We are interested in contrasting human-formalized mathematical
proofs, as exemplified by the set.mm database of Metamath [9], with those structured via
automated methods, exemplified by the TreeRePair [8] algorithm.

The Metamath language with the so-called Metamath Proof Explorer, that is, the database
set.mm of more than 40.000 proven theorems [9], provides our source of human-formalized
mathematics. Simple by design, all Metamath proofs are ultimately built up from only two
primitive proof constructors: Meredith’s condensed detachment [12, 18], D with two arguments,
representing modus ponens with unification applied to major and minor premise, and G with
a single argument, which represents embedding the premise proven by the argument within a
universal quantifier upon a fresh individual variable [10]. Within set.mm these appear as axioms
ax-mp1 and ax-gen. This very same proof structure format (so far just with the D constructor)
underlies our previous work on analyzing proofs, eliminating redundancies in proofs, proof
search, and lemma learning, also with the practical environment CD Tools2 embedded in SWI-
Prolog [17, 18, 16, 15, 13, 14].

TreeRePair [8] is an adaptation of the RePair string compression algorithm to trees, orig-
inally designed for XML documents. It is an eager algorithm aiming to produce maximally
compressed tree descriptions. It represents the compressed tree by a tree grammar where non-
terminals can have parameters such that not only duplicate subtrees but also duplicate “tree
patterns” are factorized. For example, the pattern f(a, ) in the tree f(f(a, b), f(a, c)), which can
be compressed to {Start → f(A(b), f(A(c))), A(x)→ f(a, x)}. The correspondence between tree
grammars and proof structures was observed in [15] and realized there with the implementation
of [8].3 For this project, we created our own adapted Prolog implementation of TreeRePair.

The set.mm Metamath database provides a large set of proof trees, one for each theorem,
that can be viewed both as human structured (using lemmas) and as fully expanded (with the
proof trees of lemmas inserted). We try to understand ways in which human proof structuring
differs from automated methods, hoping that this will contribute to improving search in ATP
through knowledge transfer from human formalizations, potentially relying on machine learning.

1With argument order compared to D reversed.
2http://cs.christophwernhard.com/cdtools/.
3Lemma synthesis by cut introduction on the basis of resolution proofs, e.g., [19, 5], is another ATP-based

approach to proof compression, where also tree grammar compression is considered [6]. Tree compression is
applied there to formulas, while we apply it to proof structures. Relating and comparing the approaches
remains future work.

http://cs.christophwernhard.com/cdtools/
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Prolog Representation of Metamath Databases and Proof Terms. Since Prolog is our
basic implementation language for symbolic computations, we translate a Metamath database
to a set of Prolog facts. This Metamath interface was implemented from scratch in SWI-
Prolog and is integrated in CD Tools.4 Our translation yields the same first-order formulas
as the Metamath hammer tool [3].5 Verification so far works throughout set.mm, with three
exceptions.6 The Prolog fact base is generated in about 2 minutes from set.mm. Once generated
and pre-compiled by SWI-Prolog , it can be loaded in half a second. We also translate proofs to
Prolog terms, where the space saving byMetamath’s proof compression [10, App. B] is preserved
through factorized terms. Based on this generic and lossless Prolog representation of Metamath
proofs, we support various conversions. For our experiments, we removed the variable-type or
$f hypotheses and represent proofs as in the following example.

mpd(X,Y) -> ’ax-mp’(X,a2i(Y)) (1)

If we replace ax-mp with d (corresponding to Meredith’s D), the example becomes

mpd(X,Y) -> d(a2i(Y),X) (2)

We may read this as a rewrite rule that rewrites a lemma application mpd(X,Y) in a proof term.
Exhaustive rewriting yields a proof term with only axiom designators as constants and only d,
g (or ax-mp, ax-gen) as function symbols. For our example, we then obtain – depending on
our preference of ax-mp or D – either

mpd(X,Y) -> ’ax-mp’(X,’ax-mp’(Y,’ax-2’)) or (3)

mpd(X,Y) -> d(d(’ax-2’,Y),X) (4)

A particular formula can be associated with such a proof term: the most general theorem proven
by it. It is a Horn clause with a body atom for each variable (X and Y in our example). Based
on the definition of ax-2 we obtain

P(x⇒ y)← P(x⇒ z) ∧ P(x⇒ (z ⇒ y)) (5)

Here P (suggesting “provable”) is the predicate to express condensed detachment on object-level
formulas with first-order logic at the meta-level. The function symbol⇒ represents implication
on the object level (in set.mm this is wi, displayed as ->). As a λ-term, the (expanded) definition
of mpd can be read as mpd def= λx.λy.ax-2yx, and as a variable-free combinator-term [4] this
would be mpd def= Cax-2. Besides rewriting a given poof, proof term definitions such as (1)–(4)
can be used to control proof search by restricting proof term enumeration to terms constructed
from a given set of left-hand sides, considered as proof schemas [15]. At preprocessing, the
most general theorems of the corresponding right-hand sides are determined. During the actual
proof search – structure enumeration in combination with formula unification – these theorem
formulas participate in the unification. Proof term definitions can also be exploited by any
prover by just adding their most general theorems as additional axioms.

Proofs Created by Humans vs. Extracted via TreeRePair. We experimented with
taking a large set of fully expanded proofs from set.mm and applying TreeRePair to compute
a structuring that corresponds to lemma definitions in the form of (3) or (4). Comparing the
found lemmas with those present in Metamath allows to address interesting questions such as

4http://cs.christophwernhard.com/cdtools/index.html#metamath.
5Differently from the Metamath hammer tool, it generates first-order representations directly, not via a

higher-order representation. For more information see Web documents at the URL referenced in footnote 4.
6Equality, element relationship, and theorem bj-0 stating well-formedness, seem to require special treatment.
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• To what degree can the selection of the human-chosen lemmas in Metamath be explained
as based on their strong compressing effect?

• Can TreeRePair find lemmas not in Metamath that provide a good compressing effect
and seem useful to humans?

• Variations of ATP calculi – for example binary resolution or hyperresolution – can be
modeled by means of proof structure lemmas [15]. Can these be identified among the
human-provided lemmas? Can these be found via TreeRePair?

• Can we identify abstract categories of lemmas, e.g., general inference rule or specific for
certain theorems, based on compressing effects and occurrences in given sets of proofs?

• Do mechanically observed redundancies in human-made proofs (e.g., failure of S- and C-
regularity [18]) have a beneficial purpose?

The human-created Metamath proofs are typically quite short, due to the intensive use of
lemmas. Fully expanding all their proofs, however, yields really large binary trees (with d and
g as function symbols),7 resulting in scalability issues. We address this by an iterative process,
where we start with running TreeRePair on the fully expanded proofs of only a small subset of
problems. In the resulting lemma set, we mark those that are existing lemmas in set.mm (i.e.,
have the same proof structure) as rediscovered. We move on to the next iteration, selecting a
larger set of problems, but this time the rediscovered lemmas are not expanded in the proof
trees. With this approach, we can process the first 1500 theorems of set.mm in about 1 minute.
We obtain 766 lemmas, of which 715 (48% of the processed theorems) are rediscovered and 46
are novel (see Appendix A).8
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A Extracting New Lemmas

Here we list the 46 lemmas that were identified by TreeRePair after processing the proofs of the
first 1500 theorems in set.mm. For each lemma we show its proof term definition and its most
general theorem in a notation that mimics that of set.mm, but uses Prolog variables (uppercase
letters). The role of the P predicate in (5) is taken there by |-. The $e statements form
the body of the Horn clause, and the $p statement its head. For 3 of these lemmas the most
general theorem already appears as a theorem in set.mm, but with a proof that is different
from our proof obtained with tree compression. They are annotated with a line Same MGT
as that indicates the respective theorem in set.mm. This suggests the possibility to simplify
some proofs in set.mm by using lemmas already present. That the discovered lemmas are about
propositional formulas is since we processed the first 1500 theorems of set.mm, which are on
propositional calculus. Analyzing the identified lemmas further is left for future work.

lemma26(X,Y) -> bitri(X,anbi1i(Y)).

$e |- ( A <-> ( B /\ C ) ) $.

$e |- ( B <-> D ) $.

$p |- ( A <-> ( D /\ C ) ) $.

lemma45(X) -> ’3bitr4i’(X,’df-xor’,’df-xor’).

$e |- ( -. ( A <-> B ) <-> -. ( C <-> D ) ) $.

$p |- ( ( A \/_ B ) <-> ( C \/_ D ) ) $.

lemma56(X,Y) -> syland(X,ancomsd(Y)).

$e |- ( A -> ( B -> C ) ) $.

$e |- ( A -> ( ( D /\ C ) -> E ) ) $.

$p |- ( A -> ( ( B /\ D ) -> E ) ) $.

lemma60(X) -> syl(ifptru,X).

$e |- ( ( if- ( A , B , C ) <-> B ) -> D ) $.

$p |- ( A -> D ) $.

lemma65(X) -> ’3ad2ant2’(’3ad2ant2’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ ( D /\ A /\ E ) /\ F ) -> B ) $.

lemma66(X) -> ’3ad2ant1’(’3ad2ant2’(X)).

$e |- ( A -> B ) $.

$p |- ( ( ( C /\ A /\ D ) /\ E /\ F ) -> B ) $.

lemma73(X) -> ’3ad2ant1’(’3ad2ant1’(X)).

$e |- ( A -> B ) $.

$p |- ( ( ( A /\ C /\ D ) /\ E /\ F ) -> B ) $.

lemma74(X) -> ’3ad2ant1’(’3ad2ant3’(X)).

$e |- ( A -> B ) $.

$p |- ( ( ( C /\ D /\ A ) /\ E /\ F ) -> B ) $.

lemma76(X) -> ’ax-mp’(’df-bi’,X).

$e |- ( -. ( ( ( A <-> B ) -> -. ( ( A -> B ) -> -. ( B -> A ) ) ) ->

-. ( -. ( ( A -> B ) -> -. ( B -> A ) ) -> ( A <-> B ) ) ) -> C ) $.

$p |- C $.
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lemma77(X) -> ’3ad2ant3’(’3ad2ant3’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ D /\ ( E /\ F /\ A ) ) -> B ) $.

lemma81(X) -> ’3ad2ant3’(’3ad2ant2’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ D /\ ( E /\ A /\ F ) ) -> B ) $.

lemma83(X) -> ’3ad2ant2’(’3ad2ant3’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ ( D /\ E /\ A ) /\ F ) -> B ) $.

lemma87(X) -> ’3ad2ant3’(’3ad2ant1’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ D /\ ( A /\ E /\ F ) ) -> B ) $.

lemma88(X) -> ’3ad2ant2’(’3ad2ant1’(X)).

$e |- ( A -> B ) $.

$p |- ( ( C /\ ( A /\ D /\ E ) /\ F ) -> B ) $.

lemma115(X) -> syl5(notnotr,X).

$e |- ( A -> ( B -> C ) ) $.

$p |- ( A -> ( -. -. B -> C ) ) $.

lemma129 -> bicomd(ibar).

$p |- ( A -> ( ( A /\ B ) <-> B ) ) $.

lemma143(X) -> ja(X,id).

$e |- ( -. A -> B ) $.

$p |- ( ( A -> B ) -> B ) $.

lemma145(X,Y) -> ’ax-mp’(’ax-1’,’ax-mp’(X,Y)).

$e |- A $.

$e |- ( A -> ( ( B -> ( C -> B ) ) -> D ) ) $.

$p |- D $.

lemma154(X,Y,Z) -> ’3bitr4i’(anbi2i(X),Y,Z).

$e |- ( A <-> B ) $.

$e |- ( C <-> ( D /\ A ) ) $.

$e |- ( E <-> ( D /\ B ) ) $.

$p |- ( C <-> E ) $.

lemma157(X,Y) -> syland(a1i(X),ancomsd(Y)).

$e |- ( A -> B ) $.

$e |- ( C -> ( ( D /\ B ) -> E ) ) $.

$p |- ( C -> ( ( A /\ D ) -> E ) ) $.

lemma163 -> bicomd(iba).

$p |- ( A -> ( ( B /\ A ) <-> B ) ) $.

lemma164 -> ’3anbi1d’(biidd).

$p |- ( A -> ( ( B /\ C /\ D ) <-> ( B /\ C /\ D ) ) ) $.
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lemma173(X) -> ancoms(imp(X)).

$e |- ( A -> ( B -> C ) ) $.

$p |- ( ( B /\ A ) -> C ) $.

Same MGT as impcom.

lemma174(X) -> ex(ancoms(X)).

$e |- ( ( A /\ B ) -> C ) $.

$p |- ( B -> ( A -> C ) ) $.

Same MGT as expcom.

lemma180(X,Y) -> ’3bitr4i’(X,Y,orbi12i(Y,Y)).

$e |- ( A <-> ( A \/ A ) ) $.

$e |- ( B <-> A ) $.

$p |- ( B <-> ( B \/ B ) ) $.

lemma192(X) -> com23(ex(X)).

$e |- ( ( A /\ B ) -> ( C -> D ) ) $.

$p |- ( A -> ( C -> ( B -> D ) ) ) $.

lemma198 -> imbi1i(notnotb).

$p |- ( ( A -> B ) <-> ( -. -. A -> B ) ) $.

lemma210 -> notbid(id).

$p |- ( ( A <-> B ) -> ( -. A <-> -. B ) ) $.

lemma212(X,Y) -> ’3bitr4i’(anbi1i(X),Y,’df-3an’).

$e |- ( A <-> ( B /\ C ) ) $.

$e |- ( D <-> ( A /\ E ) ) $.

$p |- ( D <-> ( B /\ C /\ E ) ) $.

lemma259 -> imbi2d(bicom1).

$p |- ( ( A <-> B ) -> ( ( C -> B ) <-> ( C -> A ) ) ) $.

lemma263 -> ’ax-mp’(’df-bi’,simplim).

$p |- ( ( A <-> B ) -> -. ( ( A -> B ) -> -. ( B -> A ) ) ) $.

lemma275(X) -> imp(imim2d(X)).

$e |- ( A -> ( B -> C ) ) $.

$p |- ( ( A /\ ( D -> B ) ) -> ( D -> C ) ) $.

lemma284 -> a1i(simpl).

$p |- ( A -> ( ( B /\ C ) -> B ) ) $.

lemma285 -> imbi2i(notnotb).

$p |- ( ( A -> B ) <-> ( A -> -. -. B ) ) $.

lemma292(X) -> ’pm5.32ri’(syl6rbb(X,orcom)).

$e |- ( A -> ( B <-> ( C \/ D ) ) ) $.

$p |- ( ( ( D \/ C ) /\ A ) <-> ( B /\ A ) ) $.

lemma310 -> ’pm5.74ri’(ibibr).

$p |- ( A -> ( B <-> ( B <-> A ) ) ) $.
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lemma317(X) -> bitri(anbi1i(X),anass).

$e |- ( A <-> ( B /\ C ) ) $.

$p |- ( ( A /\ D ) <-> ( B /\ ( C /\ D ) ) ) $.

lemma322(X) -> orri(biimpi(X)).

$e |- ( -. A <-> B ) $.

$p |- ( A \/ B ) $.

lemma328 -> con3i(’ax-1’).

$p |- ( -. ( A -> B ) -> -. B ) $.

lemma338 -> bicomd(biorf).

$p |- ( -. A -> ( ( A \/ B ) <-> B ) ) $.

lemma346(X,Y,Z) -> impbid(expcom(X),jaod(Y,Z)).

$e |- ( ( A /\ B ) -> ( C \/ D ) ) $.

$e |- ( B -> ( C -> A ) ) $.

$e |- ( B -> ( D -> A ) ) $.

$p |- ( B -> ( A <-> ( C \/ D ) ) ) $.

lemma349(X,Y) -> ’pm2.61ian’(adantrr(X),adantrl(Y)).

$e |- ( ( A /\ B ) -> C ) $.

$e |- ( ( -. A /\ D ) -> C ) $.

$p |- ( ( B /\ D ) -> C ) $.

Same MGT as exmid2.

lemma351 -> imdistani(’pm2.27’).

$p |- ( ( A /\ ( A -> B ) ) -> ( A /\ B ) ) $.

lemma362(X,Y) -> syl6c(con3d(X),con3d(Y),’pm5.21im’).

$e |- ( A -> ( B -> C ) ) $.

$e |- ( A -> ( D -> C ) ) $.

$p |- ( A -> ( -. C -> ( B <-> D ) ) ) $.
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