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Abstract

MATPROVE is a dataset featuring 57 lessons and 5221 exercises in topics such as
tensor calculus, discrete mathematics, or linear algebra, aimed at training and evaluating
machine learning techniques in mathematical problem solving and theorem proving. This
dataset provides an ideal training ground for models to learn and apply theorem proving
techniques as described in human-readable form. GPT-4 solves 68.9% of these exercises
when shown the topic lesson, and 61.4% unaided.

1 Introduction

Advances in Deep Learning, significantly propelled by large datasets such as ImageNet [9],
Netflix’s movie recommendation [4], and the Stanford Sentiment Treebank [21], have paralleled
developments in Theorem Proving with resources now available for enhancing Large Language
Models (LLMs) to compete at High School mathematics [24, 3, 23]. In order to benefit advanced
mathematics, databases for research-level proofs such as Lean [8] and Coq [5] are expanding,
but a widening gap exists between human-readable MWP (Math Word Problems) and machine-
readable TP (Theorem Proving). MATPROVE aims to bridge this by providing a structured
corpus of university-level mathematics for model training in both unsupervised and supervised
contexts.

2 Prior Work

Significant strides in automated theorem proving and mathematical reasoning have been facil-
itated by specialized datasets like ImageNet in other fields [3]. In mathematics, datasets such
as GSM8K, MathQA, and ASDiv-A have revolutionized LLMs’ capabilities [7, 2, 16]. More-
over, the integration of informal language to guide formal proofs and understanding diagrams
in mathematics underscore the necessity for interdisciplinary approaches [12, 14, 18, 17, 13].
Recent workshops and surveys like the MATH-AI series and mathematical reasoning work-
shops have highlighted ongoing research, facilitating collaboration and setting new directions.
Additionally, benchmarks such as Math23K and Dolphin18K are proving crucial in advanc-
ing NLP models to tackle diverse mathematical problems, ensuring robust and versatile AI
models [22, 20].

3 Method

First, twelve textbooks in undergraduate and graduate mathematics were selected from the
university library, such that they contain a comprehensive review of their subject, as well as
a large collection of worked problems. Following a thorough review of approaches to convert
pdf files into latex [15, 11, 10, 6], the commercial mathpix service was selected. Each book was
processed and converted into a single .tex file and many image files for figures.
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Next, the latex files were manually reviewed, and 5 were dropped for containing minor
errors. Then, a python regular expression processor was written for each book to split it into
chapters, and split each chapter into lesson, solved problems, and other. Some books contain
solutions to problems at the end, and were processed accordingly. Three of the remaining seven
books were not easily processed with regular expressions and were dropped.

Finally, each solved problem was processed with GPT-4 [1], prompted to split it into ques-
tion, work, and answer. Some problems are composed of multiple sub-problems (ex.: a), b),
c)...), and these were not separated because they often refer to each other.

The code is provided for review of implementation details, and to enable the creation of
more data.

4 Dataset

Comprising material from four textbooks, the dataset includes 57 lessons and 3302 problem-
answer pairs, 1642 of which contain fully worked solutions. Overall, the dataset encapsulates
5221 gradable question-answer pairs, enriched with figures for certain problems, providing a
substantial resource for developing AI capable of complex mathematical reasoning.

Below is a randomly selected problem from the dataset from a textbook [19]. Figure 1 shows
the raw LaTeX code of the problem, figures 2 and 3 show how the problem is split into question
and answer, in rendered LaTeX.

14.8. Prove Theorem 14.1: Suppose $S$ is a finite poset with $n$ elements.

Then there exists a consistent enumeration $f: S \rightarrow\{1,2, \ldots, n\}$.

Figure 1: LaTeX code of the example problem question segment

Prove Theorem 14.1: Suppose S is a finite poset with n elements. Then there exists a
consistent enumeration f : S → {1, 2, . . . , n}.

Figure 2: Compiled LaTeX of example problem question segment

The proof is by induction on the number n of elements in S. Suppose n = 1, say S = {s}.
Then f(s) = 1 is a consistent enumeration of S. Now suppose n > 1 and the theorem holds
for posets with fewer than n elements. Let a ∈ S be a minimal element. (Such an element a
exists since S is finite.) Let T = S\{a}. Then T is a finite poset with n− 1 elements and

hence, by induction, T admits a consistent enumeration; say g : T → {1, 2, . . . , n− 1}. Define
f : S → {1, 2, . . . , n} by:

f(x) =

{
1, if x = a

g(x) + 1 if x ̸= a

Figure 3: Compiled LaTeX of example problem solution segment
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5 Evaluation

A consequence of the real-world nature of the MATPROVE dataset is that answers come in a
wide variety of formats:

1. Yes/No

2. Multiple choice

3. Numerical (i.e., a single
number or vector)

4. Text

5. Drawing

6. Proof

Therefore, the proposed evaluation of a particular set of answers is by using a particular
LLM to compare the proposed answers with the reference answers in the dataset. The technique
implemented in the test code uses GPT-3.5 to grade each of the 5221 question-answer pairs as
follows: 0-no answer or wrong, 1-work correct but answer wrong, 2-correct answer.

6 Baseline

GPT-4 is known to give state-of-the-art results in mathematical problem solving and reasoning,
so it was used here to provide a baseline. GPT-4 was prompted to show work and provide
the answer to each question, and the answers were then graded as described above. The
same was performed when providing GPT-4 with the lesson, which resulted in a 12% relative
improvement.

Condition Correct Answers Accuracy
Without Lesson 3210 61.4%
With Lesson 3595 68.9%

Table 1: Performance of GPT-4 With and Without Initial Lesson

The generation code, test code, raw data and formatted dataset are all available at (github
link removed for anonymous review) with usage instructions.

7 Future Work and Conclusion

In order to advance Artificial Intelligence for Theorem Proving, new models must be devised
to take advantage of the corpus of mathematics textbooks. In order to design and train such
models, a dataset of lessons and relevant solved problems is necessary. Through manual se-
lection, data-mining techniques, and prompting GPT-4, such a dataset has been created for
a corpus of 57 lessons in varied university-level topics in mathematics, supplemented by 5221
unique problem-answer pairs.

Future work will include extending the dataset by repeating the process outlined here, grad-
ually producing a dataset containing cutting-edge mathematical techniques and their example
applications. This will bridge the gap between human-readable and machine-readable mathe-
matics, enabling the development of techniques to autonomously learn, make use of, and develop
new theorems and proofs in human-readable format.
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