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Introduction Although Automated Theorem Proving using Higher-Order Logic has pro-
duced several powerful systems, including well-known names like Vampire [6], E [11], and Zip-
perposition [1], incorporating dependent types into it poses a challenge. While there exist some
interactive systems utilizing dependent types [5, 4, 2], in order to keep their type-checking de-
cidable, they differentiate between judgmental and provable equality. PVS [10] is an exception
to this but supports predicate subtyping and not dependent types in general.

Rothgang et al. introduced Dependently-Typed Higher-Order Logic [9] (DHOL) and devel-
oped a translation to HOL as a first step into making viable automated theorem provers for
dependently typed logics. Niederhauser et al. then extended the theorem prover Lash [7] as
the first instance of a native ATP system able to deal with problems of this kind. We plan to
further this work and hope to make DHOL an attractive base for systems in the future.

To develop modern AI-guided provers for DHOL, we are creating a problem set sizable
enough to support meaningful benchmarks and learning data. This will allow us to check
implementations and compare them against others, providing fertile ground on which DHOL
can grow.

DHOL DHOL is an extension of the Simple Type Theory (STT) as introduced by Church [3].
More precisely, we use a classical formulation of STT that includes a base type for booleans,
primitive logical connectives for implication ⇒, and typed (term-)equality =A as well as the
constant function False ⊥. Rothgang et al. created DHOL [9] by changing the simple function
constructor A → B to the dependent version Πx : A.B and allowing for the declaration and
instantiation of dependent base types. The extension results in undecidable type-checking, as
now the type equality judgment Γ ⊢ as1...sn ≡ at1...tn requires proofs for the equivalence
(and well-typedness) of all si and ti. The classical nature and coinciding equalities lead to a
logic much closer to those of established ATPs. Type-checking needs only happen once, as all
inference rules preserve the well-typedness of the problem. Indeed, Rothgang et al. [9] show
for their translation that, if the original DHOL problem is well-typed, a valid proof of the
translated problem can be tied to a valid proof in DHOL.

Extension of TPTP We use the TPTP syntax for our problems. In particular, TPTP’s
support of quantifying over higher-order typed variables by using the !>[X:T]: in the TH1
form will be reused as the binder for quantifying over dependent types by allowing which forms
T might take. Part of this work is the specification of a proper TPTP form for DHOL, which
is syntactically straightforward but requires consideration for things like type-checking and
semantics. For example, Niederhauser et al. define two new SZS ontology statuses [12] related
to type-checking in [7]. A DHOL problem is therefore in fact a (dependent) conjunction of two
problems, as the proof of the conjecture itself is not meaningful without proof of the problem’s
well-typedness.
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Lemma L_R_neq n m (p : t n) (q : t m) : L m p <> R n q.
=̂

thf(l_r_neq, conjecture, ![M:nat, N:nat]:
(![P:(fin @ N), Q:(fin @ M)]: ((l @ N @ M @ P) = (r @ M @ N @ Q)))).

Figure 1: The original Rocq problem next to the TPTP conjecture.

Benchmark Creation The creation of the problem set is ongoing. Currently, the set includes
problems related to fixed-length lists/vectors, fixed-size matrices, and fixed-size sets. Especially
problems of the last category were translated manually from dependently typed theories in the
standard library of the Rocq prover [4]. In addition to the already mentioned categories of
problems, there are also several examples for sanity-checking type-inference, type-constraint
generation, and/or direct type-checking of a problem. These are artificial problems that do
not state any mathematical concepts. For example, a problem might establish instantiations of
generic dependent types as well as some corresponding terms to finally conjecture the equality
of those terms. While those equalities are meaningless and indeed usually false this constitutes
a minimal example of creating typing constraints between two sides of an equality.

The translation of problems between different proof systems is an interesting AI task and is of
major value for the systems themselves as dependently-typed reasoning can then be shared and
optimized independently of the systems. Our initial manual experiments can serve as a training
ground for future automated experiments. Instances of such problems were important enough
to find their way into standard libraries or were previously under active investigation. This
elevates a benchmark set from a collection of toy examples to a more meaningful representation
of what a system has to be able to achieve. Another advantage is the variety of problems that
come with it. The same concept can be expressed in different ways by different systems, of
which some differences might translate over into our representation. It should also yield more
variety in difficulty and possibly even in domains compared to handcrafting them. As such, a
way to automatically translate conjectures and axioms is desirable, increasingly so when the
number of potential problems of one source is large. However, modern proof assistants usually
provide several convenience features, such as implicit arguments and types that are inferred
from the “real” arguments. TPTP takes a more verbose approach and lists all terms and types
for a function explicitly. Figure 1 illustrates that translation from one to the other is not trivial
because some of the types are missing. Discrepancies such as these make a straight-forward
translation impossible and a sophisticated program will have to be developed to rise to the task.
While core functionality, such as the mentioned inference of implicit arguments, can be shared,
it will be necessary to have a separate parser for all considered systems. Currently, there are
plans to look further into the Rocq theorem prover [4] and expand to the Mizar Mathematical
Library1, Agda [2], and Lean [5].

Future Work The creation of this benchmark will facilitate future developments in DHOL,
its automation, and proof guidance for LashDHOL [7]. Lash already includes a strategy language,
and using strategy invention for DHOL will only be possible with a sufficiently large and diverse
set of problems. Similarly, several of the techniques developed in the system have alternatives
(for example, there are two ways how choice can be specified and implemented [8]), and choosing
the right approaches will require experimenting with them. With this, it would also be possible
to develop strategies that implement internal guidance based on machine learning. One of the

1http://mizar.org/library/
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major weaknesses of the tableaux architectures is enumerative approach to universal quantifies
and again a dataset would allow optimizing such term enumeration schemes.
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