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I propose to discuss the realization that automated theorem provers (ATPs) are universal
artificial intelligence (AI) systems when using complete search strategies [38], and how con-
sidering ATPs as a form of artificial general intelligence (AGI) can suggest fruitful, necessary
research directions. Furthermore, the AGI field may learn from the work that has gone into
making complete proof searches efficient and integrating AI and ML techniques into the sym-
bolic theorem provers.

Universal search [6] procedures work by cleverly enumerating all possible solutions (pro-
grams) increasing in size until a solution is found. Levin search solves inversion problems
where, given a function f and a value y, the goal is to find a program that outputs an x such
that f(x) = y. Hutter search solves for well-defined functions from a domain X to a domain Y ,
only working with functions that are provably equivalent to the target function with provable
time-bounds, and works by enumerating proofs to find the programs to feed to the Levin search.
With the work of Bentkamp et al. [1], we have an efficient refutation-complete superposition
calculus for full higher-order logic (HOL): from any appropriately quantifier-normalized initial
clause set, a refutation can be derived.

The scope of problems that can be formulated as HO refutation problems is very large: stan-
dard reinforcement learning problems used for training neural networks should be included. In
a constructive proof-system, existential witnesses can be extracted from the proof. Performance
constraints on the solutions should also be encodable. Universal search procedures all run into
efficiency challenges: the Solomonoff induction-based reinforcement learning agent AIXI [14] is
infamously incomputable. While a Monte-Carlo Tree Search AIXI approximation learned to
play Pac-Man [34], one can argue that the ATP field constitutes the most developed approach
to improving the performance of universal, general AI systems.

“No Free Lunch”-style theorems [23, 24, 27, 39] suggest that all effective, real-world AIs
will need to engage in a dialectic dance between specialization and generalization. To this end,
many AGI architectures [8,20–22,29,35] have been developed that aim to specify functionalities
needed for general functioning in a range of environments that humans care about and how
these components should be connected. Premise selection is a motivating example in the ATP
domain: theoretically, if it’s mutually consistent, the whole Mizar Mathematical Library (MML)
could be loaded into each proof search: given clause selection strategies and AI will determine
whether theory clauses are relevant or not on the fly. Yet practically, isolating the premise
selection module between proof search runs is essential to obtaining good performance.

Let’s review the cognitive architecture of E with ENIGMA [11, 15]. Externally, E receives
some command-line arguments, strategies, and then theory and problem descriptions, usually in
a TPTP format [30]; E returns output on the results of the proof search. Internally, E explores
a mathematical space defined by the initial clause set. E perceives this space via clauses (as
term trees) and featurized vectors (for the AI). The goal is the empty clause, implicitly aiming
for proofs with smaller terms. The cognitive cycle is the given clause loop: evaluate, select,
generate, and simplify until saturated. Planning is done via term ordering, literal selection,
symbolic time and weight-based strategies, and then AI for clause selection and filtering via
gradient-boosted decision trees and/or graph neural networks (GNN). Thought-action is taken
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via the superposition calculus, which primarily amounts to resolution and term-rewriting. For
short-term memory, E has the (un)processed clause sets, some of which can be fed to the
GNN. For long-term memory, E has proof search data (episodic memory), proof vectors in
ProofWatch [10], and AI models in ENIGMA (semantic & procedural memory). These are the
core components of a “traditional” cognitive architecture!

What features are missing that many AGI architectures contain? One debatable feature is
autonomy [32], which may only be needed for AGI systems in certain domains (such as control-
ling a Mars rover or game character): most ATPs are run on single problems or batches. Urban
et al.’s MaLARea [33] that alternates between theorem proving runs and premise selection is
an exception. Gauthier et al.’s Alien Coding [7] has been generating programs that cover new
integer sequences in the OEIS [26] for over a year without plateauing, which suggests that
theory exploration systems such as Hipster [16] could prove beneficial if run autonomously over
interactive theorem proving (ITP) systems.

Autonomy suggests another feature: maintaining a worldview. An AGI, even a non-
autonomous AGI scientist, should maintain some model of the world with which it deals. This
suggests that the AGITP1 should live on the level of ITP systems — perhaps transferring learn-
ing among formal math libraries. Technically, ENIGMA’s GNN is probably developing some
sort of worldview over the whole library’s solved problems. Premise selection can be seen as
loading long-term declarative memory into working memory, which in (sledge)hammer [4] set-
tings involves translating from one logical language to another. Semantic guidance of theorem
provers via finite interpretations of theories [25] can be integrated into modern systems and
perhaps used to flesh out comprehensive worldviews of ITP libraries. The core requirements
for conjecturing are theory exploration and quality recognition. An AGITP system that is con-
tinually exploring the ITP libraries, refining the proofs, seeking useful lemmas, and developing
a math-worldview will probably be a good foundation from which to learn how to recognize
novel, interesting conjectures and lemmas.

Two crucial features for an AGI system are self-organization and metalearning2 [5, 28]:
metalearning is the process by which a learning algorithm learns how to learn better, such
as applying one learning algorithm to fine-tune another. Metalearning goes well with self-
organization and reflection where the AI, ATP, and ITP components of the AGITP system
should be integrated together without the need for a human-in-the-loop to choose when and
how to link them up. Set up AI components to choose when to stop an iteration of training loops,
when to switch datasets, when to tweak the featurization for AI models, when to explore new
strategies and parameterizations [13], etc. The option of online learning also seems important,
such as with Tactician in Coq [2,3,40]. My own work with ProofWatch [9,10], Parental Guidance
and 3-phase ENIGMA [11,12] suggests that finding ways to integrate additional information into
the theorem proving loop, plugging AI into more choice points within the ATP, can significantly
increase performance. The hypothesis is that ATP and ITP system performance and generality
will increase as the components are effectively modularized and integrated 3.

The final capacity discussed in the abstract is the importance for an AGI to interact with
the “real world” and new domains. Autoformalization [17–19,31,36,37,41] can help map many
domains described in natural language into formal problems amenable to theorem proving.
The capacity to produce formal descriptions of multi-media scenes is also important; conversely,
working with geometric models could help with guidance on geometry problems or conjecturing.

1AGITP : the AGI theorem prover.
2Incidentally, these are features on which Large Language Model-based systems are currently weak, too.
3I recognize that this is difficult and that initial attempts at generalization can fail to outperform human

researchers. To this end, I suggest setting up a general ecosystem in which AI systems can compete with humans
on each subtask, so that the transition to full autonomy will be smooth as AI techniques rise to the challenge.
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