
IMPROVEMENTS IN PROGRAM SYNTHESIS FOR

INTEGER SEQUENCES

Thibault Gauthier, Miroslav Olšák, Josef Urban

September 4, 2023

This work was partially supported by the CTU Global Postdoc funding scheme (TG), Czech Science Foundation
project 20-06390Y (TG), ERC-CZ project POSTMAN no. LL1902 (TG), Amazon Research Awards (TG, JU),
EU ICT-48 2020 project TAILOR no. 952215 (JU), and the European Regional Development Fund under the
Czech project AI&Reasoning with identifier CZ.02.1.01/0.0/0.0/15_003/0000466 (MO, JU).

1 / 32

Selection of 123 Solved Sequences
https://github.com/Anon52MI4/oeis-alien

Table: Samples of the solved sequences.

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.
https://oeis.org/A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.
https://oeis.org/A293339 Greatest integer k such that k{2n ă 1{e.
https://oeis.org/A1848 Crystal ball sequence for 6-dimensional cubic lattice.
https://oeis.org/A8628 Molien series for A5.
https://oeis.org/A259445 Multiplicative with apnq “ n if n is odd and ap2sq “ 2.
https://oeis.org/A314106 Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings
https://oeis.org/A311889 Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315334 Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315742 Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A004165 OEIS writing backward
https://oeis.org/A83186 Sum of first n primes whose indices are primes.
https://oeis.org/A88176 Primes such that the previous two primes are a twin prime pair.
https://oeis.org/A96282 Sums of successive twin primes of order 2.
https://oeis.org/A53176 Primes p such that 2p ` 1 is composite.
https://oeis.org/A267262 Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular

automaton starting with a single ON (black) cell.

2 / 32

https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A317485
https://oeis.org/A349073
https://oeis.org/A293339
https://oeis.org/A1848
https://oeis.org/A8628
https://oeis.org/A259445
https://oeis.org/A314106
https://oeis.org/A311889
https://oeis.org/A315334
https://oeis.org/A315742
https://oeis.org/A004165
https://oeis.org/A83186
https://oeis.org/A88176
https://oeis.org/A96282
https://oeis.org/A53176
https://oeis.org/A267262

What Are the Current AI/TP TODOs/Bottlenecks?

‚ High-level structuring of proofs - proposing good lemmas
‚ Proposing new concepts, definitions and theories
‚ Proposing new targeted algorithms, decision procedures, tactics
‚ Proposing good witnesses for existential proofs
‚ All these problems involve synthesis of some mathematical objects
‚ Btw., constructing proofs is also a synthesis task
‚ This talk: explore learning-guided synthesis for OEIS
‚ Interesting research topic and tradeoff in learning/AI/proving:
‚ Learning direct guessing of objects (this talk) vs guidance for search

procedures (ENIGMA and friends)
‚ Start looking also at semantics rather than just syntax of the objects

3 / 32

Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)

– Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fängt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)

– Novalis, quoted by Popper – The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
– G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science." Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

– R. Hamming - Mathematics on a Distant Planet

4 / 32

QSynt: Semantics-Aware Synthesis of Math Objects

‚ Synthesize math expressions based on semantic characterizations
‚ i.e., not just on the syntactic descriptions (e.g. proof situations)
‚ Tree Neural Nets and Monte Carlo Tree Search
‚ Recently also various (small) language models with their search methods
‚ Invention of programs for OEIS sequences from scratch
‚ 100k OEIS sequences (out of 350k) solved so far:
https://www.youtube.com/watch?v=24oejR9wsXs,
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

‚ Millions of conjectures invented: 20+ different characterizations of primes
‚ Non-neural (Turing complete) computing and semantics collaborates with

the statistical/neural learning

5 / 32

https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: ě 350000 finite sequences

6 / 32

Generating programs for OEIS sequences

0;1;3;6;10;15;21; : : :

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

n
ÿ

i“1

i

Fast program (efficiency criteria):

n ˆ n ` n
2

7 / 32

Programming language

- Constants: 0;1;2
- Variables: x ; y
- Arithmetic: `;´;ˆ;div ;mod
- Condition : if : : : ď 0 then . . . else . . .
- looppf ;a;bq :“ ua where u0 “ b;

un “ f pun´1;nq

- Two other loop constructs: loop2, a while loop

Example:
2x “

śx
y“1 2 “ loopp2ˆ x ;x;1q

x! “
śx

y“1 y “ looppy ˆ x ;x;1q

8 / 32

QSynt: synthesizing the programs/expressions

‚ Inductively defined set P of our programs and subprograms,
‚ and an auxiliary set F of binary functions (higher-order arguments)
‚ are the smallest sets such that 0;1;2; x ; y P P, and if a;b; c P P and

f ;g P F then:

a` b;a´ b;aˆ b;a div b;a mod b; condpa;b; cq P P

�px ; yq:a P F ; looppf ;a;bq; loop2pf ;g;a;b; cq; comprpf ;aq P P

‚ Programs are built in reverse polish notation
‚ Start from an empty stack
‚ Use ML to repeatedly choose the next operator to push on top of a stack
‚ Example: Factorial is loopp�px ; yq: x ˆ y ; x ;1q , built by:

r s Ñx rxs Ñy rx ; ys Ñˆ rx ˆ ys Ñx rx ˆ y ; xs

Ñ1 rx ˆ y ; x ;1s Ñloop rloopp�px ; yq: x ˆ y ; x ;1qs

9 / 32

QSynt: Training of the Neural Net Guiding the Search
‚ The triple ppheadprx ˆ y ; xs; r1;1;2;6;24;120 : : :sq; Ñ1q is a training

example extracted from the program for factorial loopp�px ; yq: x ˆ y ; x ;1q
‚ Ñ1 is the action (adding 1 to the stack) required on rx ˆ y ; xs to progress

towards the construction of loopp�px ; yq: x ˆ y ; x ;1q.

x y

ˆ

x ˆ y

::

rx ˆ y ; xs r1;1;2;6;24;120; : : :s

head

one-hot Ñ1

::

r1;2;6;24;120; : : :s

::

1 r2;6;24;120; : : :s

::

2

10 / 32

QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is t1; x ; y ; x ˆ y ; x mod yu.

r s

rxs rys

rx ; ys ry ; xs

rx ˆ ysrx mod ys

rx mod y ;1s

1 3

2

64

5

7

11 / 32

Using Language Models for Math Tasks

‚ Recurrent neural networks (RNNs) with attention (NMT)
‚ Transformers (BERT, GPT)
‚ Applied recently to symbolic/mathematical tasks:
‚ ... rewriting, conjecturing, translation from informal to formal
‚ Formulated as sequence-to-sequence translation tasks
‚ Efficient training and inference on GPUs, many toolkits
‚ Can get expensive for large LMs (LLMs) ($5M for GPT-3)
‚ We use small models on old HW, our total energy bill is below $1000

12 / 32

Encoding OEIS for Language Models
‚ Input sequence is a series of digits
‚ Separated by an additional token # at the integer boundaries
‚ Output program is a sequence of tokens in Polish notation
‚ Parsed by us to a syntax tree and translatable to Python
‚ Example: apnq “ n!

13 / 32

Search-Verify-Train Feedback Loop

Search Check

Learn

programs

examplesweights

Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006)

14 / 32

Search-Verify-Train Feedback Loop for OEIS

‚ search phase: LM synthesizes many programs for input sequences
‚ typically 240 candidate programs for each input using beam search
‚ 84M programs for OEIS in several hours on the GPU (depends on model)
‚ checking phase: the millions of programs efficiently evaluated
‚ resource limits used, fast indexing structures for OEIS sequences
‚ check if the program generates any OEIS sequence (hindsight replay)
‚ we keep the shortest (Occams’s razor) and fastest program (efficiency)
‚ learning phase: LM trains to translate the “solved” OEIS sequences into

the best program(s) generating them

15 / 32

Search-Verify-Train Feedback Loop

‚ The weights of the LM either trained from scratch or continuously updated
‚ This yields new minds vs seasoned experts (who have seen it all)
‚ We also train experts on varied selections of data, in varied ways
‚ Orthogonality: common in theorem proving - different experts help
‚ Each iteration of the self-learning loop discovers more solutions
‚ ... also improves/optimizes existing solutions
‚ The alien mathematician thus self-evolves
‚ Occam’s razor and efficiency are used for its weak supervision
‚ Quite different from today’s LLM approaches:
‚ LLMs do one-time training on everything human-invented
‚ Our alien instead starts from zero knowledge
‚ Evolves increasingly nontrivial skills, may diverge from humans
‚ Turing complete (unlike Go/Chess) – arbitrary complex algorithms

16 / 32

QSynt web interface for program invention

17 / 32

QSynt inventing Fermat pseudoprimes
Positive integers k such that 2k ” 2 mod k . (341 “ 11 ˚ 31 is the first non-prime)

18 / 32

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)

mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
705
2465
2737
3745

19 / 32

QSynt inventing primes using Wilson’s theorem
n is prime iff pn ´ 1q!` 1 is divisible by n (i.e.: pn ´ 1q! ” ´1 mod n)

20 / 32

Introducing Local Macros/Definitions
A macro/expanded version of a program invented for A1813: apnq “ p2nq!{n!.
1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600,

21 / 32

Introducing Global Macros/Definitions
A macro/expanded version of A14187 (cubes of palindromes).
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 10648, 35937, 85184,

Figure: Representing global macros. A macro version and expanded version of a
program invented for A14187 (cubes of palindromes). Note that two macros here (K C
and B F F K K) are not proper programs, while the third one (D F C D C C C) is a
program that evaluates to 10.

22 / 32

Five Different Self-Learning Runs

0

20000

40000

60000

80000

25 50 75 100 125 150 175

tnn nmt0 nmt1 nmt2 nmt3

Figure: Cumulative counts of solutions. 23 / 32

Five Different Self-Learning Runs

0

250

500

750

1000

25 50 75 100 125 150 175

tnn nmt0 nmt1 nmt2 nmt3

Figure: Increments of solutions. 24 / 32

Size Evolution

Generation

A
vr

g.
 S

iz
e

0

20

40

60

25 50 75 100 125 150 175

small fast

Figure: Avrg. size in iterations 25 / 32

Speed Evolution

Generation

A
vr

g.
 T

im
e

20000

40000

60000
80000

200000

400000

600000

25 50 75 100 125 150 175

fast small

Figure: Avrg. time in iterations 26 / 32

Generalization of the Solutions to Larger Indices

‚ Are the programs correct?
‚ OEIS provides additional terms for some of the OEIS entries
‚ Among 78118 solutions, 40,577 of them have a b-file with 100 terms
‚ We evaluate both the small and the fast programs on them
‚ Here, 14,701 small and 11,056 fast programs time out.
‚ 90.57% of the remaining slow programs check
‚ 77.51% for the fast programs
‚ A common error is reliance on an approximation for a real number, such

as �.

27 / 32

A Benchmark for Automated Theorem Provers

‚ 29687 sequences of with a fast program P and a fast program Q.
‚ Creation of 29687 SMT problems of the form @x P N: fPpxq “ fQpxq.
‚ Checked on the first 100 natural numbers.
‚ Can we prove that they hold on all natural numbers?
‚ Requires arithmetical and inductive reasoning

28 / 32

A Benchmark for Automated Theorem Provers

‚ A217, triangular numbers:

n
ÿ

i“0

i “
n ˆ n ` n

2

‚ A537, sum of first n cubes:

n
ÿ

i“0

i3 “ p
n ˆ n ` n

2
q2

‚ A79, powers of 2:
2x “ 2px mod 2q ˆ p2px div 2qq2

‚ A165, double factorial of even numbers:

n
ź

i“1

2i “ 2n ˆ n!

29 / 32

Application to Mathematics

Mathematicians are already using computer searches to produce conjectures
or find mathematical objects:

‚ Discovery in 1995 of a more efficent formula for generating the digits of �
by Simon Plouffe.

‚ In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their
construction of a Hadamard matrix of order 428.

‚ In 2012, Geoffrey Exoo has found an edge colorings of K35 that have no
complete graphs of order 4 in the first color, and no complete graphs of
order 6 in the second color proving that Rp4;6q ě 36.

‚ Discovery in 2023 of a chiral aperiodic monotile by David Smith.

30 / 32

Application to Mathematics

Find faster algorithms for generating pseudo-prime numbers.

Given a synthesized program implementing a function f : Zˆ Z ÞÑ Z we can
construct a candidate matrix:

‚ A “ paijq for a Hadamard matrix by
aij “ if f pi ; jq ď 0 then 1 else ´ 1.

‚ B “ pbijq for the adjacency matrix of a Ramsey graph by
bij “ if f pi ; jq ď 0 then 1 else 0.

Solely guessing/conjecturing may not be enough to obtain new results on
these open problems. A combination of statistical conjecture-making steps
and deductive-style reasoning steps could be more successful.

31 / 32

Thank you for your attention!

https://github.com/Anon52MI4/oeis-alien

32 / 32

https://github.com/Anon52MI4/oeis-alien

	Motivation, Learning vs. Reasoning vs. Guessing

