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Selection of 123 Solved Sequences
https://github.com/Anon52MI4/oeis-alien

Table: Samples of the solved sequences.

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.
https://oeis.org/A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.
https://oeis.org/A293339 Greatest integer k such that k{2n ă 1{e.
https://oeis.org/A1848 Crystal ball sequence for 6-dimensional cubic lattice.
https://oeis.org/A8628 Molien series for A5.
https://oeis.org/A259445 Multiplicative with apnq “ n if n is odd and ap2sq “ 2.
https://oeis.org/A314106 Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings
https://oeis.org/A311889 Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315334 Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315742 Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A004165 OEIS writing backward
https://oeis.org/A83186 Sum of first n primes whose indices are primes.
https://oeis.org/A88176 Primes such that the previous two primes are a twin prime pair.
https://oeis.org/A96282 Sums of successive twin primes of order 2.
https://oeis.org/A53176 Primes p such that 2p ` 1 is composite.
https://oeis.org/A267262 Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular

automaton starting with a single ON (black) cell.
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What Are the Current AI/TP TODOs/Bottlenecks?

‚ High-level structuring of proofs - proposing good lemmas
‚ Proposing new concepts, definitions and theories
‚ Proposing new targeted algorithms, decision procedures, tactics
‚ Proposing good witnesses for existential proofs
‚ All these problems involve synthesis of some mathematical objects
‚ Btw., constructing proofs is also a synthesis task
‚ This talk: explore learning-guided synthesis for OEIS
‚ Interesting research topic and tradeoff in learning/AI/proving:
‚ Learning direct guessing of objects (this talk) vs guidance for search

procedures (ENIGMA and friends)
‚ Start looking also at semantics rather than just syntax of the objects
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Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)

– Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fängt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)

– Novalis, quoted by Popper – The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
– G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science." Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

– R. Hamming - Mathematics on a Distant Planet

4 / 32



QSynt: Semantics-Aware Synthesis of Math Objects

‚ Synthesize math expressions based on semantic characterizations
‚ i.e., not just on the syntactic descriptions (e.g. proof situations)
‚ Tree Neural Nets and Monte Carlo Tree Search
‚ Recently also various (small) language models with their search methods
‚ Invention of programs for OEIS sequences from scratch
‚ 100k OEIS sequences (out of 350k) solved so far:
https://www.youtube.com/watch?v=24oejR9wsXs,
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

‚ Millions of conjectures invented: 20+ different characterizations of primes
‚ Non-neural (Turing complete) computing and semantics collaborates with

the statistical/neural learning
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OEIS: ě 350000 finite sequences
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Generating programs for OEIS sequences

0;1;3;6;10;15;21; : : :

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

n
ÿ

i“1

i

Fast program (efficiency criteria):

n ˆ n ` n
2
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Programming language

- Constants: 0;1;2
- Variables: x ; y
- Arithmetic: `;´;ˆ;div ;mod
- Condition : if : : : ď 0 then . . . else . . .
- looppf ;a;bq :“ ua where u0 “ b;

un “ f pun´1;nq

- Two other loop constructs: loop2, a while loop

Example:
2x “

śx
y“1 2 “ loopp2ˆ x ;x;1q

x! “
śx

y“1 y “ looppy ˆ x ;x;1q
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QSynt: synthesizing the programs/expressions

‚ Inductively defined set P of our programs and subprograms,
‚ and an auxiliary set F of binary functions (higher-order arguments)
‚ are the smallest sets such that 0;1;2; x ; y P P, and if a;b; c P P and

f ;g P F then:

a` b;a´ b;aˆ b;a div b;a mod b; condpa;b; cq P P

�px ; yq:a P F ; looppf ;a;bq; loop2pf ;g;a;b; cq; comprpf ;aq P P

‚ Programs are built in reverse polish notation
‚ Start from an empty stack
‚ Use ML to repeatedly choose the next operator to push on top of a stack
‚ Example: Factorial is loopp�px ; yq: x ˆ y ; x ;1q , built by:

r s Ñx rxs Ñy rx ; ys Ñˆ rx ˆ ys Ñx rx ˆ y ; xs

Ñ1 rx ˆ y ; x ;1s Ñloop rloopp�px ; yq: x ˆ y ; x ;1qs
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QSynt: Training of the Neural Net Guiding the Search
‚ The triple ppheadprx ˆ y ; xs; r1;1;2;6;24;120 : : :sq; Ñ1q is a training

example extracted from the program for factorial loopp�px ; yq: x ˆ y ; x ;1q
‚ Ñ1 is the action (adding 1 to the stack) required on rx ˆ y ; xs to progress

towards the construction of loopp�px ; yq: x ˆ y ; x ;1q.

x y

ˆ

x ˆ y

::

rx ˆ y ; xs r1;1;2;6;24;120; : : :s

head

one-hot Ñ1

::

r1;2;6;24;120; : : :s

::

1 r2;6;24;120; : : :s

::

2
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QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is t1; x ; y ; x ˆ y ; x mod yu.

r s

rxs rys

rx ; ys ry ; xs

rx ˆ ysrx mod ys

rx mod y ;1s

1 3

2

64

5

7
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Using Language Models for Math Tasks

‚ Recurrent neural networks (RNNs) with attention (NMT)
‚ Transformers (BERT, GPT)
‚ Applied recently to symbolic/mathematical tasks:
‚ ... rewriting, conjecturing, translation from informal to formal
‚ Formulated as sequence-to-sequence translation tasks
‚ Efficient training and inference on GPUs, many toolkits
‚ Can get expensive for large LMs (LLMs) ( $5M for GPT-3)
‚ We use small models on old HW, our total energy bill is below $1000
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Encoding OEIS for Language Models
‚ Input sequence is a series of digits
‚ Separated by an additional token # at the integer boundaries
‚ Output program is a sequence of tokens in Polish notation
‚ Parsed by us to a syntax tree and translatable to Python
‚ Example: apnq “ n!
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Search-Verify-Train Feedback Loop

Search Check

Learn

programs

examplesweights

Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006)
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Search-Verify-Train Feedback Loop for OEIS

‚ search phase: LM synthesizes many programs for input sequences
‚ typically 240 candidate programs for each input using beam search
‚ 84M programs for OEIS in several hours on the GPU (depends on model)
‚ checking phase: the millions of programs efficiently evaluated
‚ resource limits used, fast indexing structures for OEIS sequences
‚ check if the program generates any OEIS sequence (hindsight replay)
‚ we keep the shortest (Occams’s razor) and fastest program (efficiency)
‚ learning phase: LM trains to translate the “solved” OEIS sequences into

the best program(s) generating them
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Search-Verify-Train Feedback Loop

‚ The weights of the LM either trained from scratch or continuously updated
‚ This yields new minds vs seasoned experts (who have seen it all)
‚ We also train experts on varied selections of data, in varied ways
‚ Orthogonality: common in theorem proving - different experts help
‚ Each iteration of the self-learning loop discovers more solutions
‚ ... also improves/optimizes existing solutions
‚ The alien mathematician thus self-evolves
‚ Occam’s razor and efficiency are used for its weak supervision
‚ Quite different from today’s LLM approaches:
‚ LLMs do one-time training on everything human-invented
‚ Our alien instead starts from zero knowledge
‚ Evolves increasingly nontrivial skills, may diverge from humans
‚ Turing complete (unlike Go/Chess) – arbitrary complex algorithms
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QSynt web interface for program invention
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QSynt inventing Fermat pseudoprimes
Positive integers k such that 2k ” 2 mod k . (341 “ 11 ˚ 31 is the first non-prime)
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Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)

mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
705
2465
2737
3745
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QSynt inventing primes using Wilson’s theorem
n is prime iff pn ´ 1q!` 1 is divisible by n (i.e.: pn ´ 1q! ” ´1 mod n)
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Introducing Local Macros/Definitions
A macro/expanded version of a program invented for A1813: apnq “ p2nq!{n!.
1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600,
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Introducing Global Macros/Definitions
A macro/expanded version of A14187 (cubes of palindromes).
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 10648, 35937, 85184,

Figure: Representing global macros. A macro version and expanded version of a
program invented for A14187 (cubes of palindromes). Note that two macros here (K C
and B F F K K) are not proper programs, while the third one (D F C D C C C) is a
program that evaluates to 10.
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Five Different Self-Learning Runs
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Five Different Self-Learning Runs
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Size Evolution

Generation
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Speed Evolution
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Generalization of the Solutions to Larger Indices

‚ Are the programs correct?
‚ OEIS provides additional terms for some of the OEIS entries
‚ Among 78118 solutions, 40,577 of them have a b-file with 100 terms
‚ We evaluate both the small and the fast programs on them
‚ Here, 14,701 small and 11,056 fast programs time out.
‚ 90.57% of the remaining slow programs check
‚ 77.51% for the fast programs
‚ A common error is reliance on an approximation for a real number, such

as �.

27 / 32



A Benchmark for Automated Theorem Provers

‚ 29687 sequences of with a fast program P and a fast program Q.
‚ Creation of 29687 SMT problems of the form @x P N: fPpxq “ fQpxq.
‚ Checked on the first 100 natural numbers.
‚ Can we prove that they hold on all natural numbers?
‚ Requires arithmetical and inductive reasoning
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A Benchmark for Automated Theorem Provers

‚ A217, triangular numbers:

n
ÿ

i“0

i “
n ˆ n ` n

2

‚ A537, sum of first n cubes:

n
ÿ

i“0

i3 “ p
n ˆ n ` n

2
q2

‚ A79, powers of 2:
2x “ 2px mod 2q ˆ p2px div 2qq2

‚ A165, double factorial of even numbers:

n
ź

i“1

2i “ 2n ˆ n!
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Application to Mathematics

Mathematicians are already using computer searches to produce conjectures
or find mathematical objects:

‚ Discovery in 1995 of a more efficent formula for generating the digits of �
by Simon Plouffe.

‚ In 2005, Hadi Kharaghani and Behruz Tayfeh-Rezaie published their
construction of a Hadamard matrix of order 428.

‚ In 2012, Geoffrey Exoo has found an edge colorings of K35 that have no
complete graphs of order 4 in the first color, and no complete graphs of
order 6 in the second color proving that Rp4;6q ě 36.

‚ Discovery in 2023 of a chiral aperiodic monotile by David Smith.
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Application to Mathematics

Find faster algorithms for generating pseudo-prime numbers.

Given a synthesized program implementing a function f : Zˆ Z ÞÑ Z we can
construct a candidate matrix:

‚ A “ paijq for a Hadamard matrix by
aij “ if f pi ; jq ď 0 then 1 else ´ 1.

‚ B “ pbijq for the adjacency matrix of a Ramsey graph by
bij “ if f pi ; jq ď 0 then 1 else 0.

Solely guessing/conjecturing may not be enough to obtain new results on
these open problems. A combination of statistical conjecture-making steps
and deductive-style reasoning steps could be more successful.
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Thank you for your attention!

https://github.com/Anon52MI4/oeis-alien
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