LISA First-Order Interactive Proof Assistant

Simon Viktor Guilloud¹ Kunčak¹

Dragana Milovančević¹

Philipp Rümmer²

- ¹ Laboratory for Automated Reasoning and Analysis, EPFL, Switzerland
- ² Faculty of Informatics and Data Science, University of Regensburg, Germany

Al for theorem proving needs libraries and frameworks to integrate and manipulate formal knowledge.

We hope LISA framework can be useful because of its

- \cdot foundations on (TG) set theory can semantically embed other foundations
- **design** with simple proof kernel (schematic FOL)
- **implementation** in Scala (well-supported ecosystem, DSLs, libraries for distributed computing)

LISA of the Present

 \cdot Based on FOL

- \cdot Based on FOL
- Small Kernel, hybrid LCF-style

- \cdot Based on FOL
- Small Kernel, hybrid LCF-style
- \cdot High programmability and integrability focus

- \cdot Based on FOL
- Small Kernel, hybrid LCF-style
- High programmability and integrability focus
- Written in Scala as an extensible library

LISA uses First Order Logic as its foundational language, and extends it with schematic function and predicate symbols.

$${'\!P}\left(0\right) \wedge \forall x. \left({'\!P}\left(x\right) \implies {'\!P}\left(x+1\right)\right) \vdash \forall x.{'\!P}\left(x\right)$$

LISA uses First Order Logic as its foundational language, and extends it with schematic function and predicate symbols.

$${'\!P}\left(0\right) \wedge \forall x. \left({'\!P}\left(x\right) \implies {'\!P}\left(x+1\right)\right) \vdash \forall x.{'\!P}\left(x\right)$$

- Theory-agnostic kernel
- Uses Set Theory for mathematical library

• Sequents $\Gamma \vdash \Delta$, with Γ and Δ sets of formulas

- + Sequents $\Gamma \vdash \Delta$, with Γ and Δ sets of formulas
- Introduction rule for each logical symbol on each side + Cut, Weakening

- + Sequents $\Gamma \vdash \Delta$, with Γ and Δ sets of formulas
- Introduction rule for each logical symbol on each side + Cut, Weakening

- + Sequents $\Gamma \vdash \Delta$, with Γ and Δ sets of formulas
- Introduction rule for each logical symbol on each side + Cut, Weakening

$$\frac{\Gamma \vdash \phi[s/x], \Delta}{\Gamma, s = t, \vdash \phi[t/x], \Delta} \quad \text{SubstEq}$$

$$rac{\Gamma \vdash \Delta}{\Gamma[\psi(ec{v})/P] \vdash \Delta[\psi(ec{v})/P]}$$
 InstPredSchema

But strictly formal proofs can be excessively tedious for humans to write

$$\frac{\vdash a \land (b \lor c) \qquad a \land (c \lor b) \vdash d}{\vdash d} \operatorname{Cut}$$

But strictly formal proofs can be excessively tedious for humans to write

$$\frac{\vdash a \land (b \lor c) \qquad a \land (c \lor b) \vdash d}{\vdash d} \operatorname{Cut}$$

Doesn't work, but to swap b and c...

$$a \wedge (b \lor c) \qquad (c \lor b) \wedge a$$

$$a \wedge (b \vee c) \equiv (c \vee b) \wedge a$$

$$a \wedge (b \vee c) \quad \sim_{OL} \quad (c \vee b) \wedge a$$

$$a \wedge (b \vee c) \quad \sim_{OL} \quad (c \vee b) \wedge a$$

Ortholattices:

Distributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c)$

$$a \wedge (b \vee c) \quad \sim_{OL} \quad (c \vee b) \wedge a$$

Ortholattices:

Distributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c) X$ Absorption: $a \land (a \lor c) = a \checkmark$

$$a \wedge (b \vee c) \quad \sim_{OL} \quad (c \vee b) \wedge a$$

Ortholattices:

Distributivity: $a \land (b \lor c) = (a \land b) \lor (a \land c) \checkmark$ Absorption: $a \land (a \lor c) = a \checkmark$

• Satisfies all other Boolean laws

1

$$a \wedge (b \vee c) \quad \sim_{OL} \quad (c \vee b) \wedge a$$

Ortholattices:

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) X$$

Absorption: $a \land (a \lor c) = a \checkmark$

• Satisfies all other Boolean laws

1

 $\cdot \implies$ sound approximation of Boolean equivalence

$$a \wedge (b \vee c) \qquad \sim_{OL} \qquad (c \vee b) \wedge a$$

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) X$$

Absorption: $a \land (a \lor c) = a \checkmark$

- Satisfies all other Boolean laws
- $\cdot \implies$ sound approximation of Boolean equivalence
- Algorithm for quadratic-time equivalence and implication checking

$$a \wedge (b \vee c) \qquad \sim_{OL} \qquad (c \vee b) \wedge a$$

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) \checkmark$$

Absorption: $a \land (a \lor c) = a \checkmark$

- Satisfies all other Boolean laws
- $\cdot \implies$ sound approximation of Boolean equivalence
- Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form

$$a \wedge (b \vee c) \qquad \sim_{OL} \qquad (c \vee b) \wedge a$$

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) X$$

Absorption: $a \land (a \lor c) = a \checkmark$

- Satisfies all other Boolean laws
- $\cdot \implies$ sound approximation of Boolean equivalence
- · Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form
- Also considers alpha-equivalence, reflexivity and symmetry of equality and more

$$a \wedge (b \vee c) \qquad \sim_{OL} \qquad (c \vee b) \wedge a$$

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) X$$

Absorption: $a \land (a \lor c) = a \checkmark$

- Satisfies all other Boolean laws
- $\cdot \implies$ sound approximation of Boolean equivalence
- · Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form
- Also considers alpha-equivalence, reflexivity and symmetry of equality and more

$$a \wedge (b \vee c) \qquad \sim_{OL} \qquad (c \vee b) \wedge a$$

Ortholattices:

Distributivity:
$$a \land (b \lor c) = (a \land b) \lor (a \land c) \checkmark$$

Absorption: $a \land (a \lor c) = a \checkmark$

- Satisfies all other Boolean laws
- $\cdot \implies$ sound approximation of Boolean equivalence
- · Algorithm for quadratic-time equivalence and implication checking
- Computes a normal form
- Also considers alpha-equivalence, reflexivity and symmetry of equality and more

Simon Guilloud, Mario Bucev, Dragana Milovančević, and Viktor Kunčak. "Formula normalizations in verification." In: International Conference on Computer Aided Verification. Springer. 2023, pp. 398–422

- Small, around 1200 LOC.
- Written in a restricted, simple subset of Scala
- Possibly feasible for formal verification

Proofs

2

4

6

10

```
val x = variable
val P = predicate(1)
val f = function(1)
val fixedPointDoubleApplication = Theorem(
          \forall (x, P(x) \Longrightarrow P(f(x))) \vdash P(x) \Longrightarrow P(f(f(x)))
     ) {
     assume(\forall(x, P(x) \Rightarrow P(f(x))))
     val step1 = have(P(x) \Rightarrow P(f(x))) by InstantiateForall
     val step2 = have(P(f(x)) \Rightarrow P(f(f(x)))) by InstantiateForall
     have(thesis) by Tautology.from(step1, step2)
}
```

• Tactics are simply functions computing proofs

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL

- Tactics are simply functions computing proofs
- \cdot Freely mix Scala code with LISA proofs and DSL
- Given a proof state, play with it as you want...

- Tactics are simply functions computing proofs
- Freely mix Scala code with LISA proofs and DSL
- Given a proof state, play with it as you want...
- \cdot ...return a proof at the end

To prove a formula ("OL-DPLL"):

To prove a formula ("OL-DPLL"):

• normalize the formula

To prove a formula ("OL-DPLL"):

- normalize the formula
- if it is true, done

- normalize the formula
- if it is true, done
- if it is false, throw an error

- normalize the formula
- if it is true, done
- if it is false, throw an error
- $\cdot\,$ in any other case, choose your favourite atom, say A

- \cdot normalize the formula
- if it is true, done
- if it is false, throw an error
- \cdot in any other case, choose your favourite atom, say A
- + prove the formula with $A\mapsto \top$

- \cdot normalize the formula
- if it is true, done
- if it is false, throw an error
- \cdot in any other case, choose your favourite atom, say A
- + prove the formula with $A\mapsto \top$
- + prove the formula with $A\mapsto \bot$

- \cdot normalize the formula
- if it is true, done
- if it is false, throw an error
- \cdot in any other case, choose your favourite atom, say A
- + prove the formula with $A\mapsto \top$
- + prove the formula with $A\mapsto \bot$
- \cdot combine

```
object Tautology extends ProofTactic {
       def solveFormula(f: Formula,
           decisionsPos: List[Formula],
3
           decisionsNeg: List[Formula]): proof.ProofTacticJudgement = {
           // proves decisionsPos ⊢ f :: decisionsNeg
           val normF = OLnormalForm(f)
           if (normF = T) Restate(decisionsPos \vdash f :: decisionsNeg)
9
           else if (normF = \perp) InvalidProofTactic("Not a propositional tautology")
10
           else TacticSubproof {
               val atom = findBestAtom(normF)
14
               have(solveFormula(normF(atom \rightarrow \top), atom :: decisionsPos, decisionsNeg)) //
       recursive
               val step2 = thenHave(atom :: decisionsPos \cap normF :: decisionsNeg)
16
                    by Substitution(\top \iff \text{atom})
18
               have(solveFormula(normF(atom \rightarrow \perp), decisionsPos, atom :: decisionsNeg)) //
19
       recursive
               val step4 = thenHave(decisionsPos ⊢ normF :: atom :: decisionsNeg)
                    by Substitution(\bot \iff \text{atom})
               have(decisionsPos \vdash normF :: decisionsNeg) by Cut(step4, step2)
23
               thenHave(decisionsPos ⊢ f :: decisionsNeg) by Restate
24
25
26
```

27 }

• Based on Tarski-Grothendieck (TG) Set Theory

- Based on Tarski-Grothendieck (TG) Set Theory
- \cdot TG = ZFC with universes

- Based on Tarski-Grothendieck (TG) Set Theory
- TG = ZFC with universes
- \cdot Set theory generally accepted foundation among mathematicians

- Based on Tarski-Grothendieck (TG) Set Theory
- \cdot TG = ZFC with universes
- \cdot Set theory generally accepted foundation among mathematicians
- Can formalize most modern mathematics

Mathematical Library

Currently, formalization includes:

- Functions and relations
- Partial and well orders
- \cdot Ordinals
- \cdot Transfinite induction and recursion

Mathematical Library

Currently, formalization includes:

- Functions and relations
- Partial and well orders
- Ordinals
- Transfinite induction and recursion

```
val transfiniteInduction = Theorem(
 ∀(x, ordinal(x) ⇒ (∀(y, y ∈ x ⇒ Q(y)) ⇒ Q(x)))
 ⊢ ∀(x, ordinal(x) ⇒ Q(x))
) {
 ...
}
val transfiniteRecursion = Theorem(
 ordinal(a) ⊢ ∃!(g, functionalOver(g, a) ∧
 ∀(b, b ∈ a ⇒ (app(g, b) ≡ F(restrictedFunction(g, b)))))
) {
 ...
}
```

- Formalization of Group Theory
- Inside Set Theory

- Formalization of Group Theory
- Inside Set Theory
- Homomorphisms, subgroups, etc.
- And some tactics!

LISA of the Future

• an embedding of Higher-Order Logic (HOL) into Set Theory.

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- Embed types as sets, including function types

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- \cdot Embed types as sets, including function types
- Corresponds to a "soft" type system: in practice one usually doesn't write $\varnothing \subset \pi$

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- \cdot Embed types as sets, including function types
- Corresponds to a "soft" type system: in practice one usually doesn't write $\varnothing \subset \pi$
- \cdot Soft types carry information both for humans and for automation

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- \cdot Embed types as sets, including function types
- Corresponds to a "soft" type system: in practice one usually doesn't write $\varnothing \subset \pi$
- \cdot Soft types carry information both for humans and for automation

- an embedding of Higher-Order Logic (HOL) into Set Theory.
- \cdot Embed types as sets, including function types
- Corresponds to a "soft" type system: in practice one usually doesn't write $\varnothing \subset \pi$
- \cdot Soft types carry information both for humans and for automation

Mike Gordon. Merging HOL with set theory. Tech. rep. University of Cambridge, Computer Laboratory, 1994

- Starting from Stainless, a program verifier for Scala
- Build foundations for more trustable program verification
- With more granular user feedback and interaction

```
def plusOne(x: Int): Int = {
    x + 1
}
```

```
def plusOne(x: Int): Int = {
    require(x >= 0)
    x + 1
}
```

```
def plusOne(x: Int): Int = {
    require(x >= 0)
    x + 1
} ensuring(res => res >= 1)
```

```
def plusOne(x: Int): Int = {
    require(x >= 0)
    x + 1
} ensuring(res => res >= 1)
//$> stainless myFile.scala
//$> ... counterexample
```

SMT-based automation works quite well, till it doesn't!

• Horn-clause driven verification backend

- Horn-clause driven verification backend
- Goal: Proof-producing program verification

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver
- Augment to reconstruct LISA proofs

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver
- Augment to reconstruct LISA proofs
- Use proofs for feedback with higher granularity and readability

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver
- $\cdot\,$ Augment to reconstruct LISA proofs
- Use proofs for feedback with higher granularity and readability
- $\cdot \implies$ program verification grounded in set-theory

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver
- $\cdot\,$ Augment to reconstruct LISA proofs
- Use proofs for feedback with higher granularity and readability
- $\cdot \implies$ program verification grounded in set-theory

- Horn-clause driven verification backend
- Goal: Proof-producing program verification
- Integrate with the Eldarica Horn solver
- Augment to reconstruct LISA proofs
- Use proofs for feedback with higher granularity and readability
- $\cdot \implies$ program verification grounded in set-theory

Benefits outside of program verification too!

• Goal: introducing more formal proofs to undergraduate students

- Goal: introducing more formal proofs to undergraduate students
- Turns out we already have most of the ingredients

Given the following lemmas:

(MAPNIL) Nil.map(f) === Nil (MAPCONS) (x :: xs).map(f) === f(x) :: xs.map(f) (MAPTRNIL) Nil.mapTr(f, ys) === ys (MAPTRCONS) (x :: xs).mapTr(f, ys) === xs.mapTr(f, ys ++ (f(x) :: Nil)) (NILAPPEND) Nil ++ xs === xs (CONSAPPEND) (x :: xs) ++ ys === x :: (xs ++ ys) Let us first prove the following lemma:

(ACCOUT) l.mapTr(f, y :: ys) === y :: l.mapTr(f, ys) We prove it by induction on l. Question 8 Induction step: 1 is x :: xs. Therefore, we need to prove:

(x :: xs).map(f) === (x :: xs).mapTr(f, Nil)

We name the inductions hypothesis IH.

Starting from the left hand-side ($(x :: x_s) .map(f)$), what exact sequence of lemmas should we apply to get the right hand-side ($(x :: x_s) .mapTr(f, Nil)$)?

- MAPCONS, NILAPPEND, ACCOUT, IH, MAPTRCONS
- MAPCONS, NILAPPEND, IH, ACCOUT, MAPTRCONS
- MAPTRCONS, IH, ACCOUT, NILAPPEND, MAPCONS
- MAPTRCONS, NILAPPEND, IH, IH, MAPCONS
- MAPCONS, IH, NILAPPEND, ACCOUT, MAPTRCONS
- MAPCONS, IH, NILAPPEND, MAPTRCONS, IH
- MAPCONS, IH, IH, NILAPPEND, MAPTRCONS
- MAPCONS, ACCOUT, IH, NILAPPEND, MAPTRCONS
- MAPTRCONS, ACCOUT, NILAPPEND, IH, MAPCONS
- MAPCONS, IH, NILAPPEND, MAPTRCONS, ACCOUT
- MAPCONS, NILAPPEND, ACCOUT, MAPTRCONS, ACCOUT
- MAPCONS, NILAPPEND, ACCOUT, MAPTRCONS, IH
- MAPTRCONS, IH, NILAPPEND, ACCOUT, MAPCONS
- MAPCONS, IH, ACCOUT, NILAPPEND, MAPTRCONS
- MAPCONS, NILAPPEND, IH, ACCOUT, MAPTRCONS
- MAPCONS, NILAPPEND, ACCOUT, ACCOUT, MAPTRCONS

Using LISA's DSL and Scala extensions, we can have a similar formal syntax:

```
val mapTrEq = Theorem(
    (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) {
    ...
}
```

Using LISA's DSL and Scala extensions, we can have a similar formal syntax:

```
val mapTrEq = Theorem(
    (x :: xs).map(f) = (x :: xs).mapTr(f, Nil)
) {
    ...
}
```

- Since LISA is a Scala library, it integrates with students' existing IDE
- The syntax is intuitive enough, as it corresponds to actual functional programs

LISA — Summary

- Proof Assistant in Scala
- Small kernel based on schematic FOL
- Proof and Tactic interface with LISA's DSL
- \cdot Mathematical library based on TG set theory

Future plans:

- Embedding of HOL
- Integration with Horn-clause based program verification
- Proofs for undergraduate functional programming

References

- [1] Simon Guilloud, Mario Bucev, Dragana Milovančević, and Viktor Kunčak. "Formula normalizations in verification." In: International Conference on Computer Aided Verification. Springer. 2023, pp. 398–422.
- [2] Mike Gordon. *Merging HOL with set theory*. Tech. rep. University of Cambridge, Computer Laboratory, 1994.

```
val myTheorem = Theorem(P ∧ Q ⊢ Q ∧ P) {
    assume(P ∧ Q)
    have(Q ∧ P) by Restate
}
```

```
1 val myTheorem = Theorem(P \land Q \vdash Q \land P) {

2 assume(P \land Q)

3 have(Q \land P) by Restate

4 }
```

```
Just Scala syntax!
```

```
have(
ConnectorFormula(And, Seq(Q, P))
)
.by(using proof)(Restate)
```