Computer-assisted mathematics

- Kepler conjecture (sphere packing) J.Kepler (1611) ...

T.Hales (1998)

- Robbins conjecture (abstract algebra) w.McCune (1996)
- 4-color Conjecture \longrightarrow Theorem K.Appel, w.Haken (1977) F.Guthrie (1852), A.Cayley (1878), A.Kempe (1879), P.Tait (1880), ...
- Feigenbaum's universality conjecture (chaos theory)
O.Lanford (1982)
- Kahler-Einstein metrics and other special metrics on complex projective varieties
S.Donaldson $(2005, \ldots$)

Using ML to discover new mathematics:

- Finding counterexamples (disproving conjectures)
- Formulating new conjectures (learning new patterns)

Mathematics of AI:

 foundations, explainable AI, geometric deep learning, algorithm design, ...Proof assistants: autoformalization, SAT-solvers, LEAN, Minerva, GPT-4, ...

$n=$	1	2	3	4	5	6	7	8	9	10	11	12
TOP	1	1	1	1	1	1	1	1	1	1	1	1
PL	1	1	1	$?$	1	1	1	1	1	1	1	1
DIFF	1	1	1	$?$	1	1	28	2	8	6	992	1

The generalized Poincare conjecture:

- Top: true for all n
- PL: true for all $n \neq 4$ ($n=4$ currently not known)
- Diff: true for $n=1,2,3,5$, and 6
PL = Diff

Generalized Poincare conjecture:

Every homotopy 4 -sphere is diffeomorphic to the standard 4 -sphere.

Theorem: If one finds a pair of knots which satisfy the following three properties:

- K and K^{\prime} have the same 0-surgery
- K is not slice
- K^{\prime} is slice
then the smooth 4-dimensional Poincare conjecture is false.
- Is it knotted?
S.G., J.Halverson, F.Ruehle, P.Sulkowski

- Is it ribbon? Is it slice? S.G., J.Halverson, C.Manolescu, F.Ruehle (SPC4, slice-ribbon, ...)
https://github.com/ruehlef/ribbon

- Is it Andrews-Curtis trivial? work in progress

Combinatorial group theory
I.

II.

III.

Kurt Reidemeister

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad \text { for }|i-j|>1
$$

$\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$

Learning to Unknot

Sergei Gukov ${ }^{1}$, James Halverson ${ }^{2,3}$, Fabian Ruehle ${ }^{4,5}$, Piotr Sułkowski ${ }^{1,6}$

Reformer performance on UNKNOT as function of braid length. Performance increases with N.

Knottedness is in NP, modulo GRH

Greg Kuperberg*
Department of Mathematics, University of California, Davis, CA 95616

Given a tame knot K presented in the form of a knot diagram, we show that the problem of determining whether K is knotted is in the complexity class NP, assuming the generalized Riemann hypothesis (GRH). In other words, there exists a polynomial-length certificate that can be verified in polynomial time to prove that K is non-trivial. GRH is not needed to believe the certificate, but only to find a short certificate. This result complements the result of Hass, Lagarias, and Pippenger that unknottedness is in NP. Our proof is a corollary of major results of others in algebraic geometry and geometric topology.

Unknottedness $\in N P \cap \operatorname{coNP}$ integer $\stackrel{?}{=}$ product of two primes

Fraction of unknots whose braid words could be reduced to the empty braid word as a function of initial braid word length.

Average number of actions necessary to reduce the input braid word to the empty braid word as a function of initial braid word length.

- Is it knotted?
S.G., J.Halverson, F.Ruehle, P.Sulkowski

- Is it ribbon? Is it slice? S.G., J.Halverson, C.Manolescu, F.Ruehle (SPC4, slice-ribbon, ...)
https://github.com/ruehlef/ribbon

- Is it Andrews-Curtis trivial? work in progress

Combinatorial group theory

Theorem [Lickorish, Wallace]:
Every connected oriented closed 3-manifold arises by performing an integral Dehn surgery along a link in S^{3}.
p / r

Special surgeries:

Property R

Theorem ("property R" conjecture):
D.Gabai (1983)

If the 0 -surgery on $K \subset S^{3}$ is homeomorphic to $S^{1} \times S^{2}$, then K is the unknot.

The trefoil knot and the figure-8 knot are uniquely characterized by 0 -surgery.

$$
M_{3}=S_{0}^{3}(K)
$$

D.Gabai (1987)

FIBERED KNOTS AND POTENTIAL COUNTEREXAMPLES TO THE PROPERTY 2R AND SLICE-RIBBON CONJECTURES

ROBERT E. GOMPF, MARTIN SCHARLEMANN, AND ABIGAIL THOMPSON

Figure 2. A slice knot that might not be ribbon

Generalized Poincare conjecture:

Every homotopy 4 -sphere is diffeomorphic to the standard 4 -sphere.

Theorem: If one finds a pair of knots which satisfy the following three properties:

- K and K^{\prime} have the same 0-surgery
- K is not slice
- K^{\prime} is slice
then the smooth 4-dimensional Poincare conjecture is false.

Benchmarks for Sym Dataset

Benchmarks for Ribbon-to-14 Dataset

Benchmarks for Sym Dataset

Leveraging Procedural Generation to Benchmark Reinforcement Learning

Karl Cobbe ${ }^{1}$ Christopher Hesse ${ }^{1}$ Jacob Hilton ${ }^{1}$ John Schulman ${ }^{1}$

Figure 4. Generalization performance from 500 levels in each environment. The mean and standard deviation is shown across 3 seeds.

Could not find ribbons:

$K_{G}(0,1,-1,-1,1,0)$

$K_{G}(2,0,0,-1,2,-1)$

$K_{B}(0,1,2,0,-1,-1)$

$K_{B}(0,0,2,0,0,-1)$

$$
\{0\}=\left\{\begin{array}{c}
\text { slice } \\
\text { knots }
\end{array}\right\} \underbrace{\subset \ldots \subset \underbrace{\text { topologically }}_{\text {Cochran-Orr-Teichner }} \text { slice knots }}_{\text {Cochran-Harvey-Horn }}\}\} \underbrace{\subset \ldots \subset \subset \mathcal{C}}_{\text {© }}
$$

Our computations indicate that K14a19470 is 2-torsion.

- Is it knotted?
S.G., J.Halverson, F.Ruehle, P.Sulkowski

- Is it ribbon? Is it slice? S.G., J.Halverson, C.Manolescu, F.Ruehle (SPC4, slice-ribbon, ...)
https://github.com/ruehlef/ribbon
- Is it Andrews-Curtis trivial? Hard AC presentations work in progress

Conjecture [J.Andrews and M.Curtis '65]:

Every balanced presentation of the trivial group

$$
\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n}\right\rangle
$$

can be reduced to the trivial presentation

$$
\left\langle x_{1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{n}\right\rangle
$$

by a sequence of Andrews-Curtis (Nielsen) moves:

\[

\]

- No counterexamples with relations of total length < 13
- Believed to be false
- Many potential counterexamples, e.g.

$$
\left\langle x, y \mid x y x=y x y, x^{n+1}=y^{n}\right\rangle \quad n \geq 3
$$

S.Akbulut, R.Kirby (1985)

- Validating any of these, disproves the following

Conjecture ("Generalized Property R"):

If surgery on an n-component link L yields the connected sum $\left(S^{1} \times S^{2}\right)^{\# n}$, then L is obtained from the 0 -framed unlink by a sequence of handle slides.
R.Gompf, M.Scharlemann, A. Thompson (2010)

- A handle decomposition of a homotopy sphere without 3-handles gives a balanced presentation of the trivial group
- AC moves $=$ Kirby moves (without introducing 3-handles)
- A potential counterexample to AC gives a potential counterexample to SPC4

Theorem:

$$
\left\langle x, y \mid x y x=y x y, x^{5}=y^{4}\right\rangle
$$

gives a standard 4-sphere.

International Journal of Algebra and Computation
Vol. 13, No. 1 (2003) 61-68

BREADTH-FIRST SEARCH AND THE ANDREWS-CURTIS CONJECTURE

GEORGE HAVAS* and COLIN RAMSAY ${ }^{\dagger}$
Centre for Discrete Mathematics and Computing
School of Information Technology and Electrical Engineering The University of Queensland, Queensland 4072, Australia

Theorem. Let G be a group defined by a balanced presentation on two generators, with the sum of the relator lengths at most thirteen. Then:
(i) if G has trivial abelianization, G is trivial or is isomorphic to $L_{2}(5)$, the unique perfect group of order 120 ;
(ii) if G is trivial, its presentation is $A C$-equivalent to the standard presentation or to the presentation $\left\langle x, y \mid x^{3}=y^{4}, x y x=y x y\right\rangle$.

$\mathrm{T} \backslash \mathrm{L}$	10	11	12	13	14	15	16	17	18	19	20
13	$\mathbf{4}$										
14	$\mathbf{1 0}$										
15	$\mathbf{7 0}$										
16	64	$\mathbf{8 6}$									
17	220	416	454	$\mathbf{4 5 8}$							
18	98	392	398	$\mathbf{5 9 0}$							
19	240	764	1382	2854	$\mathbf{3 2 2 6}$						
20	10	442	522	2004	2082	3352	3352	$\mathbf{3 3 5 6}$			
21	20	746	1624	3870	8334	16948	19666	19690	19690	$\mathbf{1 9 6 9 2}$	$\mathbf{1 9 6 9 2}$
22	0	438	570	2812	3714	12288	12584	23174	23174	23188	23192
23	0	112	1462	4474	9194	21678	41492	101544	128356	128380	128388
24	0	6	42	3400	3858	12978	15458	61100	64686	150264	150276
25	0	0	110	4350	11246	22422	42550	102262	236860	631000	843778
26	0	0	0	4306	5384	17930	19668	62874	83902	375818	394172
27	0	0	0	710	13548	28176	51590	96714	196098	538380	1269016
28	0	0	0	52	494	26008	27874	76930	83864	289920	364040
29	0	0	0	0	1652	30934	77162	123178	230774	445036	953378
30	0	0	0	0	2	20430	24146	128556	138478	355754	405746
31	0	0	0	0	0	5854	62178	159086	368336	546680	1041462
32	0	0	0	0	0	326	3338	122164	130302	597064	639362
33	0	0	0	0	0	0	6314	151550	353810	730650	1758270
34	0	0	0	0	0	0	62	128556	150518	538278	585132
35	0	0	0	0	0	0	0	22772	374246	872784	1519374
36	0	0	0	0	0	0	0	1848	19030	762768	813708
37	0	0	0	0	0	0	0	0	51496	1016332	2112918
38	0	0	0	0	0	0	0	0	522	848998	946260
39	0	0	0	0	0	0	0	0	0	209668	2414958
40	0	0	0	0	0	0	0	0	0	19332	120852
41	0	0	0	0	0	0	0	0	0	0	270942
42	0	0	0	0	0	0	0	0	0	0	12062

TABLE 1. Each cell shows the number of pairs AC-equivalent to $\operatorname{AK}(3)$ of total length T obtained by the program when run with the length bound L. Highlighted cells do not increase when L is increased.
D.Panteleev, A.Ushakov

1. $<x, y^{\wedge}\{-1\}>$
2. $<x^{\wedge}\{-1\}, x$ y $x^{\wedge}\{-1\}>$
3. $<x x y^{\wedge}\{-1\} x^{\wedge}\{-1\}, x$ y $x^{\wedge}\{-1\}>$
4. $<x x y^{\wedge}\{-1\} x^{\wedge}\{-1\}, x y^{\wedge}\{-1\} x^{\wedge}\{-1\}>$ 5. $<x x y^{\wedge}\{-1\} x^{\wedge}\{-1\}, y x y^{\wedge}\{-1\} x^{\wedge}\{-1\} y^{\wedge}\{-1\}>$ 6. $<x$ x y $x^{\wedge}\{-1\}, y x y x^{\wedge}\{-1\} y^{\wedge}\{-1\}>$

Example	PPO	A2C	A3C	DQN
1	$00: 04: 51$	$00: 01: 08$	$00: 00: 43$	$00: 02: 39$
2	$00: 07: 19$	$00: 01: 53$	$00: 02: 50$	$00: 02: 52$
3	$00: 08: 05$	Terminated $(15$ mins $)$	$00: 04: 47$	Terminated $(15$ mins $)$
4	$00: 13: 00$	--	$00: 11: 50$	--
5	$00: 14: 17$	--	$00: 13: 00$	--
6	$00: 13: 50$	--	Terminated $(30$ mins $)$	--

THE COMPLEXITY OF BALANCED PRESENTATIONS AND THE ANDREWS-CURTIS CONJECTURE

MARTIN R. BRIDSON

Hard AC presentations

Theorem A. For $k \geq 4$ one can construct explicit sequences of k-generator balanced presentations \mathcal{P}_{n} of the trivial group so that
(1) the presentations \mathcal{P}_{n} are $A C$-trivialisable;
(2) the sum of the lengths of the relators in \mathcal{P}_{n} is at most $24(n+1)$;
(3) the number of (dihedral) AC moves required to trivialise \mathcal{P}_{n} is bounded below by the function $\Delta\left(\left\lfloor\log _{2} n\right\rfloor\right)$ where $\Delta: \mathbb{N} \rightarrow \mathbb{N}$ is defined recursively by $\Delta(0)=2$ and $\Delta(m+1)=2^{\Delta(m)}$.
7.4. An Example. Let me close by writing down an explicit presentation to emphasize that the explosive growth in the length of AC-trivialisations begins with relatively small presentrations Here is a balanced presentation of the trivial group that requires more than $10^{10000} \mathrm{AC}$-moyes to trivialise it. We use the commutator convention $[x, y]=x y x^{-1} y^{-1}$.

$$
\begin{aligned}
& \langle a, t, \alpha, \tau|\left[t a t^{-1}, a\right] a^{-1}, \quad\left[\tau \alpha \tau^{-1}, \alpha\right] \alpha^{-1}, \\
& \quad \alpha t^{-1} \alpha^{-1}\left[a,\left[t\left[t\left[t a^{20} t^{-1}, a\right] t^{-1}, a\right] t^{-1}, a\right]\right] \\
& \left.\quad a \tau^{-1} a^{-1}\left[\alpha,\left[\tau\left[\tau\left[\tau \alpha^{20} \tau^{-1}, \alpha\right] \tau^{-1}, \alpha\right] \tau^{-1}, \alpha\right]\right]\right\rangle
\end{aligned}
$$

Mark your calendar!

Dec. 10-13: Mathematics and ML

 https://mathml2023.caltech.edu/
Dec. 13-16: String Data 2023

https://stringdata2023.caltech.edu/

@Caltech

